首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2099篇
  免费   162篇
  国内免费   194篇
  2024年   11篇
  2023年   43篇
  2022年   90篇
  2021年   147篇
  2020年   105篇
  2019年   94篇
  2018年   82篇
  2017年   74篇
  2016年   89篇
  2015年   120篇
  2014年   139篇
  2013年   147篇
  2012年   148篇
  2011年   174篇
  2010年   93篇
  2009年   82篇
  2008年   100篇
  2007年   97篇
  2006年   119篇
  2005年   77篇
  2004年   68篇
  2003年   41篇
  2002年   38篇
  2001年   20篇
  2000年   22篇
  1999年   37篇
  1998年   30篇
  1997年   31篇
  1996年   32篇
  1995年   21篇
  1994年   13篇
  1993年   10篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有2455条查询结果,搜索用时 171 毫秒
61.
62.
63.
Studies focusing on the association of gene methylthioadenosine phosphorylase (MTAP) with the risk of coronary artery disease (CAD) and myocardial infarction (MI) are limited.  相似文献   
64.
Parthenogenetic embryos are invariably lost in mid-gestation, possibly due to the lack of the paternal genome and the consequent induction of aberrant gene expression. Wnt signaling is essential for embryonic development; however, the studies of this pathway in porcine parthenogenetic embryos have been limited. Here, the role of Wnt signaling in porcine parthenogenetic embryos was studied. In vivo embryos were used as controls. Single cell quantitative real-time PCR showed that Wnt signaling was down-regulated in porcine parthenogenetic embryos. Furthermore, immunofluorescence staining and real-time PCR demonstrated that porcine parthenogenetic embryo development was largely unaffected by the inhibition of Wnt signaling with IWP-2, but blastocyst hatching and trophectoderm development was blocked. In addition, parthenogenetic blastocyst hatching was improved by the activation of Wnt signaling by BIO. However, the developmental competency of porcine embryos, including blastocyst hatching, was impaired and apoptosis was induced upon the excessive activation of Wnt signaling. These findings constitute novel evidence that Wnt signaling is important for porcine pre-implantation development and that its down-regulation may lead to the low hatching rate of porcine parthenogenetic blastocysts.  相似文献   
65.
The presence of Neotyphodium endophyte in forage grass tillers has been associated with increased tolerance of abiotic stresses. The effect of four endophyte treatments (plants with three different strains of Neotyphodium lolii compared with plants without endophyte) on superoxide dismutase (SOD) (EC1.15.1.1) activity in Lolium perenne cv ‘Grasslands Samson’ was measured under high and low dehydration regimes in a glasshouse experiment. SOD activity was assayed by a microplate method utilising the inhibition of reduction of a tetrazolium dye by superoxide radicals. A progressive increase in dehydration over 2 weeks reduced shoot fresh weight, dry weight and shoot water content for high, compared with low, moisture-stressed plants. Mean shoot fresh weight was significantly lower for plants with strain AR37 endophyte than for plants with strain AR1 endophyte, wild-type or endophyte-free plants, but there was no interaction between endophyte treatment and dehydration treatment. There were no differences in mean SOD activity between the dehydration treatments, and the four endophyte treatments at any of the harvests. All harvest mean SOD levels for plants in both stress groups, however, were significantly different from the preceding harvest value. Between the first and second week of moisture stress there was a significant endophyte by harvest interaction for mean percentage change in SOD activity when activity in plants with wild-type strain endophyte increased more rapidly than in AR1, AR37 or endophyte-free plants. The results are in agreement with earlier reports suggesting that Neotyphodium endophytes do not have major effects on the water stress physiology of perennial ryegrass, although water deficits applied were not extreme.  相似文献   
66.
We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2?), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2?, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2? and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2? dependent, and 3) protection by DCEB is evident beginning during ischemia.  相似文献   
67.
Previous studies have shown that melatonin is implicated in modulating learning and memory processing. Melatonin also exerts neuroprotective activities against Aβ-induced injury in vitro and in vivo. Neu-P11 (piromelatine, N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-pyran-2-carboxamide) is a novel melatonin (MT1/MT2) receptor agonist and a serotonin 5-HT1A/1D receptor agonist recently developed for the treatment of insomnia. In the present study we firstly investigated whether Neu-P11 and melatonin enhance memory performance in the novel object recognition (NOR) task in rats, and then assessed whether Neu-P11 and melatonin improve neuronal and cognitive impairment in a rat model of Alzheimer' disease (AD) induced by intrahippocampal Aβ(1–42) injection. The results showed that a single morning or afternoon administration of Neu-P11 enhanced object recognition memory measured at 4 or 24 h after training. Melatonin was effective in the memory facilitating effects only when administered in the afternoon. Further results showed that intrahippocampal Aβ(1–42) injection resulted in hippocampal cellular loss, as well as decreased learning ability and memory in the Y maze and NOR tasks in rats. Neu-P11 but not melatonin attenuated cellular loss and cognitive impairment in the rat AD model. The current data suggest that Neu-P11 may serve as a novel agent for the treatment of AD.  相似文献   
68.

Objectives

Caspases, a family of cysteine proteases with unique substrate specificities, contribute to apoptosis, whereas autophagy‐related genes (ATGs) regulate cytoprotective autophagy or autophagic cell death in cancer. Accumulating evidence has recently revealed underlying mechanisms of apoptosis and autophagy; however, their intricate relationships still remain to be clarified. Identification of caspase/ATG switches between apoptosis and autophagy may address this problem.

Materials and methods

Identification of caspase/ATG switches was carried out using a series of elegant systems biology & bioinformatics approaches, such as network construction, hub protein identification, microarray analyses, targeted microRNA prediction and molecular docking.

Results

We computationally constructed the global human network from several online databases and further modified it into the basic caspase/ATG network. On the basis of apoptotic or autophagic gene differential expressions, we identified three molecular switches [including androgen receptor, serine/threonine‐protein kinase PAK‐1 (PAK‐1) and mitogen‐activated protein kinase‐3 (MAPK‐3)] between certain caspases and ATGs in human breast carcinoma MCF‐7 cells. Subsequently, we identified microRNAs (miRNAs) able to target androgen receptor, PAK‐1 and MAPK‐3, respectively. Ultimately, we screened a range of small molecule compounds from DrugBank, able to target the three above‐mentioned molecular switches in breast cancer cells.

Conclusions

We have systematically identified novel caspase/ATG switches involved in miRNA regulation, and predicted targeted anti‐cancer drugs. These findings may uncover intricate relationships between apoptosis and autophagy and thus provide further new clues towards possible cancer drug discovery.
  相似文献   
69.
70.
The clinical use of pluripotent stem cell (PSC)‐derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three‐dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte‐conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin‐positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC‐derived neural cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1013–1022, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号