首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19428篇
  免费   1456篇
  国内免费   1341篇
  2024年   43篇
  2023年   256篇
  2022年   597篇
  2021年   1080篇
  2020年   715篇
  2019年   906篇
  2018年   808篇
  2017年   618篇
  2016年   886篇
  2015年   1260篇
  2014年   1480篇
  2013年   1518篇
  2012年   1766篇
  2011年   1534篇
  2010年   959篇
  2009年   819篇
  2008年   946篇
  2007年   767篇
  2006年   727篇
  2005年   575篇
  2004年   527篇
  2003年   471篇
  2002年   407篇
  2001年   373篇
  2000年   341篇
  1999年   313篇
  1998年   207篇
  1997年   188篇
  1996年   174篇
  1995年   152篇
  1994年   115篇
  1993年   105篇
  1992年   132篇
  1991年   110篇
  1990年   96篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   25篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Glutathione S-transferases (GSTs) constitute an important multifunctional enzyme family that plays vital roles in cellular detoxification and protecting organisms against oxidative stress caused by reactive oxygen species (ROS). In this study, we isolated a GST-like gene from Apis cerana cerana (AccGSTL) and investigated its antioxidant functions under stress conditions. We found that AccGSTL belongs to the Sigma class of GSTs. Real-time quantitative PCR and western blotting analyses showed that the mRNA and protein levels of AccGSTL were altered in response to oxidative stress caused by various external stimuli. In addition, a heterologous expression analysis showed that AccGSTL overexpression in Escherichia coli (E. coli) cells enhanced resistance to oxidative stress. After AccGSTL silencing with RNA interference (RNAi) technology, the expression of some antioxidant genes was inhibited, and the enzymatic activities of POD, CAT, and SOD were decreased. In conclusion, these data suggest that AccGSTL may be involved in antioxidant defense under adverse conditions in A. cerana cerana.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-022-01255-3.  相似文献   
992.
Ferroptosis and neuroinflammation play crucial roles in Alzheimer''s disease (AD) pathophysiology. Forsythoside A (FA), the main constituent of Forsythia suspensa (Thunb.) Vahl., possesses anti-inflammatory, antibacterial, antioxidant, and neuroprotective properties. The present study aimed to investigate the potential role of FA in AD neuropathology using male APP/PS1 double transgenic AD mice, Aβ1-42-exposed N2a cells, erastin-stimulated HT22 cells, and LPS-induced BV2 cells. FA treatment significantly improved mitochondrial function and inhibited lipid peroxidation in Aβ1-42-exposed N2a cells. In LPS-stimulated BV2 cells, FA treatment decreased the formation of the pro-inflammatory factors IL-6, IL-1β, and NO. In male APP/PS1 mice, FA treatment ameliorated memory and cognitive impairments and suppressed Aβ deposition and p-tau levels in the brain. Analyses using proteomics, immunohistochemistry, ELISA, and western blot revealed that FA treatment significantly augmented dopaminergic signaling, inhibited iron deposition and lipid peroxidation, prevented the activation of IKK/IκB/NF-κB signaling, reduced the secretion of pro-inflammatory factors, and promoted the production of anti-inflammatory factors in the brain. FA treatment exerted anti-ferroptosis and anti-neuroinflammatory effects in erastin-stimulated HT22 cells, and the Nrf2/GPX4 axis played a key role in these effects. Collectively, these results demonstrate the protective effects of FA and highlight its therapeutic potential as a drug component for AD treatment.  相似文献   
993.
Polycystic ovarian syndrome (PCOS) is one of the most prevalent endocrinopathies and the leading cause of anovulatory infertility, but its pathogenesis remains elusive. Although HB-EGF is involved in ovarian cancer progression, there is still no clarity about its relevance with PCOS. The present study exhibited that abundant HB-EGF was noted in follicular fluid from PCOS women, where it might induce the granulosa cells (GCs) production of more estrogen via the elevation of CYP19A1 expression after binding to EGFR. Furthermore, HB-EGF transduced intracellular downstream cAMP-PKA signaling to promote the phosphorylation of JNK and ERK whose blockage impeded the induction of HB-EGF on estrogen secretion. Meanwhile, HB-EGF enhanced the accumulation of intracellular Ca2+ whose chelation by BAPTA-AM abrogated the stimulation of HB-EGF on FOXO1 along with an obvious diminishment for estrogen production. cAMP-PKA-JNK/ERK-Ca2+ pathway played an important role in the crosstalk between HB-EGF and FOXO1. Treatment of GCs with HB-EGF resulted in mitochondrial dysfunction as evinced by the reduction of ATP content, mtDNA copy number and mitochondrial membrane potential. Additionally, HB-EGF facilitated the opening of mitochondrial permeability transition pore via targeting BAX and raised the release of cytochrome C from mitochondria into the cytosol to trigger the apoptosis of GCs, but this effectiveness was counteracted by estrogen receptor antagonist. Collectively, HB-EGF might induce mitochondrial dysfunction and GCs apoptosis through advancing estrogen hypersecretion dependent on cAMP-PKA-JNK/ERK-Ca2+-FOXO1 pathway and act as a promising therapeutic target for PCOS.  相似文献   
994.
王艳  赵懿琛  赵德刚 《广西植物》2021,41(2):274-282
为了解杜仲基因密码子使用模式,该文以杜仲基因组密码子为研究对象,运用CodonW软件对杜仲的320个蛋白编码基因进行同义密码子相对使用频率(RSCU)分析、ENC-GC3s关联分析编码基因的密码子ENC值、PR2-plot偏倚分析编码基因的密码子碱基使用频率,并运用CUSP软件与Codon Usage Database...  相似文献   
995.
996.
997.
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.  相似文献   
998.
999.
1000.
SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer’s disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号