首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   80篇
  国内免费   72篇
  2024年   2篇
  2023年   11篇
  2022年   27篇
  2021年   44篇
  2020年   17篇
  2019年   31篇
  2018年   36篇
  2017年   22篇
  2016年   33篇
  2015年   48篇
  2014年   46篇
  2013年   47篇
  2012年   60篇
  2011年   64篇
  2010年   34篇
  2009年   27篇
  2008年   16篇
  2007年   28篇
  2006年   25篇
  2005年   26篇
  2004年   27篇
  2003年   22篇
  2002年   40篇
  2001年   25篇
  2000年   22篇
  1999年   22篇
  1998年   20篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   11篇
  1993年   2篇
  1992年   9篇
  1991年   1篇
  1990年   8篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有883条查询结果,搜索用时 281 毫秒
71.
72.
DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.  相似文献   
73.
74.
Three aldohexoses, glucose, galactose, and mannose, and three aldopentoses, arabinose, xylose, and ribose, were derivatized with L‐tryptophanamide (L‐TrpNH2) under alkaline conditions. Using a basic mobile phase (pH 9.2), the three aldohexoses or the three aldopentoses were simultaneously enantioseparated, respectively, but all the six monosaccharides could not be simultaneously enantioseparated. A large amount of nonreacted L‐TrpNH2 was detected after the derivatized monosaccharides. In order to widen the separation window, a large portion of nonreacted L‐TrpNH2 could be eliminated by liquid–liquid extraction with ethylacetate, and elution order of the derivatized monosaccharides and nonreacted L‐TrpNH2 was found to be reversed using a neutral mobile phase. All of the six monosaccharides were simultaneously enantioseparated by reversed phase high‐performance liquid chromatography (HPLC) using InertSustainSwift C18 column (4.6 mm i.d. × 150 mm) and a mobile phase containing 180 mM phosphate buffer (pH 7.6), 1.5 mM butylboronic acid, and 5% acetonitrile at 40 °C. Nomenclature of D and L for monosaccharides is based on the configurations of the asymmetric C4 center for aldopentoses and C5 center for aldohexoses. It was found that the enantiomer elution order of these six monosaccharides and fucose in the proposed method conformed to be the absolute configuration of the C2 center. Chirality 27:417–421, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
75.
76.
Derived from the HTS hit 1, a series of hydroxyisoquinolines was discovered as potent and selective 11β-HSD1 inhibitors with good cross species activity. Optimization of substituents at the 1 and 4 positions of the isoquinoline group in addition to the core modifications, with a special focus on enhancing metabolic stability and aqueous solubility, resulted in the identification of several compounds as potent advanced leads.  相似文献   
77.
The integration of molecular networks with other types of data, such as changing levels of gene expression or protein-structural features, can provide richer information about interactions than the simple node-and-edge representations commonly used in the network community. For example, the mapping of 3D-structural data onto networks enables classification of proteins into singlish- or multi-interface hubs (depending on whether they have >2 interfaces). Similarly, interactions can be classified as permanent or transient, depending on whether their interface is used by only one or by multiple partners. Here, we incorporate an additional dimension into molecular networks: dynamic conformational changes. We parse the entire PDB structural databank for alternate conformations of proteins and map these onto the protein interaction network, to compile a first version of the Dynamic Structural Interaction Network (DynaSIN). We make this network available as a readily downloadable resource file, and we then use it to address a variety of downstream questions. In particular, we show that multi-interface hubs display a greater degree of conformational change than do singlish-interface ones; thus, they show more plasticity which perhaps enables them to utilize more interfaces for interactions. We also find that transient associations involve smaller conformational changes than permanent ones. Although this may appear counterintuitive, it is understandable in the following framework: as proteins involved in transient interactions shuttle between interchangeable associations, they interact with domains that are similar to each other and so do not require drastic structural changes for their activity. We provide evidence for this hypothesis through showing that interfaces involved in transient interactions bind fewer classes of domains than those in a control set.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号