全文获取类型
收费全文 | 209篇 |
免费 | 16篇 |
国内免费 | 50篇 |
专业分类
275篇 |
出版年
2024年 | 1篇 |
2023年 | 9篇 |
2022年 | 19篇 |
2021年 | 36篇 |
2020年 | 10篇 |
2019年 | 20篇 |
2018年 | 19篇 |
2017年 | 9篇 |
2016年 | 8篇 |
2015年 | 15篇 |
2014年 | 20篇 |
2013年 | 22篇 |
2012年 | 23篇 |
2011年 | 16篇 |
2010年 | 11篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 6篇 |
2003年 | 1篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
排序方式: 共有275条查询结果,搜索用时 26 毫秒
251.
大棚甜瓜蒸腾规律及其影响因子 总被引:6,自引:0,他引:6
研究大棚甜瓜的蒸腾规律和影响因子,可以为大棚甜瓜水分优化管理提供理论依据。利用大棚盆栽试验,设定了4个水分梯度,定量分析了大棚甜瓜蒸腾规律及蒸腾量与植株生理特性、气象环境因子、土壤水分含量的关系。结果表明:(1)各水分处理条件下甜瓜蒸腾强度日变化曲线均呈"双峰型",有明显的"午休"现象。(2)甜瓜生理需水系数与叶面积指数、有效积温关系显著,分别呈线性和抛物线函数关系。(3)甜瓜全生育期累计蒸腾量呈现出"慢—快—慢"的变化规律,可以用Logistic函数进行模拟。(4)甜瓜叶面积指数、日平均空气温度、日平均空气相对湿度、日太阳辐射累积、土壤相对含水量均与单株日蒸腾量呈显著性相关关系;甜瓜叶面积指数对蒸腾的综合作用最大,是决策变量;土壤水分含量是限制变量,主要通过对其他因子的影响间接作用于蒸腾。(5)气象环境因子对甜瓜蒸腾量的影响力很大程度上取决于土壤水分含量;气象环境因子与蒸腾量的相关性随土壤水分含量的增大而增大,在土壤相对含水量为70%—80%范围内达到最高值,当土壤含水量接近田间持水量时,与各因子的相关系数逐渐下降。(6)甜瓜水分胁迫指数与土壤相对有效含水量关系显著,二者呈现线性关系。 相似文献
252.
Chaoran Liu Zhong Liu Meng Li Xiaoling Li Yum-Shing Wong Sai-Ming Ngai Wenjie Zheng Yibo Zhang Tianfeng Chen 《PloS one》2013,8(1)
Thioredoxin system plays an important role in regulation of intracellular redox balance and various signaling pathways. Thioredoxin reductase (TrxR) is overexpressed in many cancer cells and has been identified as a potential target of anticancer drugs. Auranofin (AF) is potent TrxR inhibitor with novel in vitro and in vivo anticancer activities. Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects through induction of apoptosis. In the present study, we demonstrated the synergistic effects and the underlying molecular mechanisms of SeC in combination with AF on MCF-7 human breast cancer cells. The results showed that SeC and AF synergistically inhibited the cancer cell growth through induction of ROS-dependent apoptosis with the involvement of mitochondrial dysfunction. DNA damage-mediated p53 phosphorylation and down-regulation of phosphorylated AKT and ERK also contributed to cell apoptosis. Moreover, we demonstrated the important role of TrxR activity in the synergistic action of SeC and AF. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR. 相似文献
253.
254.
Xiangxu Hu Guan Wang Lei Shan Shuyan Sun Yibo Hu Fuwen Wei 《Ecology and evolution》2020,10(12):5913-5921
Sensitivity to bitter tastes provides animals with an important means of interacting with their environment and thus, influences their dietary preferences. Genetic variants encoding functionally distinct receptor types contribute to variation in bitter taste sensitivity. Our previous study showed that two nonsynonymous sites, A52V and Q296H, in the TAS2R20 gene are directionally selected in giant pandas from the Qinling Mountains, which are speculated to be the causative base‐pair changes of Qinling pandas for the higher preference for bamboo leaves in comparison with other pandas. Here, we used functional expression in engineered cells to identify agonists of pTAS2R20 (i.e., giant panda's TAS2R20) and interrogated the differences in perception in the in vitro responses of pTAS2R20 variants to the agonists. Our results show that pTAS2R20 is specifically activated by quercitrin and that pTAS2R20 variants exhibit differences in the sensitivity of their response to the agonist. Compared with pTAS2R20 in pandas from other areas, the receptor variant with A52V and Q296H, which is most commonly found in Qinling pandas, confers a significantly decreased sensitivity to quercitrin. We subsequently quantified the quercitrin content of the leaves of bamboo distributed in the Qinling Mountains, which was found to be significantly higher than that of the leaves of bamboo from panda habitats in other areas. Our results suggest that the decreased sensitivity to quercitrin in Qinling pandas results in higher‐quercitrin‐containing bamboo leaves to be tasting less bitter to them and thus, influences their dietary preference. This study illustrates the genetic adaptation of Qinling pandas to their environments and provides a fine example of the functional effects of directional selection in the giant panda. 相似文献
255.
Yibo Zhuang Guixia Ding Min Zhao Mi Bai Lingyun Yang Jiajia Ni Rong Wang Zhanjun Jia Songming Huang Aihua Zhang 《The Journal of biological chemistry》2014,289(36):25101-25111
Proteinuria serves as a direct causative factor of renal tubular cell injury and is highly associated with the progression of chronic kidney disease via uncertain mechanisms. Recently, evidence demonstrated that both NLRP3 inflammasome and mitochondria are involved in the chronic kidney disease progression. The present study was undertaken to examine the role of NLRP3 inflammasome/mitochondria axis in albumin-induced renal tubular injury. In patients with proteinuria, NLRP3 was significantly up-regulated in tubular epithelial cells and was positively correlated with the severity of proteinuria. In agreement with these results, albumin remarkably activated NLRP3 inflammasome in both in vitro renal tubular cells and in vivo kidneys in parallel with significant epithelial cell phenotypic alteration and cell apoptosis. Genetic disruption of NLRP3 inflammasome remarkably attenuated albumin-induced cell apoptosis and phenotypic changes under both in vitro and in vivo conditions. In addition, albumin treatment resulted in a significant mitochondrial abnormality as evidenced by the impaired function and morphology, which was markedly reversed by invalidation of NLRP3/caspase-1 signaling pathway. Interestingly, protection of mitochondria function by Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) or cyclosporin A (CsA) robustly attenuated albumin-induced injury in mouse proximal tubular cells. Collectively, these findings demonstrated a pathogenic role of NLRP3 inflammasome/caspase-1/mitochondria axis in mediating albumin-induced renal tubular injury. The discovery of this novel axis provides some potential targets for the treatment of proteinuria-associated renal injury. 相似文献
256.
Fuwen Wei Yibo Hu Lifeng Zhu Michael W. Bruford Xiangjiang Zhan Lei Zhang 《Molecular ecology》2012,21(23):5660-5674
Few species attract much more attention from the public and scientists than the giant panda (Ailuropoda melanoleuca), a popular, enigmatic but highly endangered species. The application of molecular genetics to its biology and conservation has facilitated surprising insights into the biology of giant pandas as well as the effectiveness of conservation efforts during the past decades. Here, we review the history of genetic advances in this species, from phylogeny, demographical history, genetic variation, population structure, noninvasive population census and adaptive evolution to reveal to what extent the current status of the giant panda is a reflection of its evolutionary legacy, as opposed to the influence of anthropogenic factors that have negatively impacted this species. In addition, we summarize the conservation implications of these genetic findings applied for the management of this high‐profile species. Finally, on the basis of these advances and predictable future changes in genetic technology, we discuss future research directions that seem promising for giant panda biology and conservation. 相似文献
257.
近岸典型生态系统大型底栖动物的次级生产力——以瓯江口、洞头列岛为例 总被引:1,自引:0,他引:1
为更好了解和估算河口及岛屿生态系统大型底栖动物次级生产力的情况,以近岸两个典型生态系统河口-瓯江口、岛屿-洞头列岛为例,于2015年4月和10月在该海域进行大型底栖动物调查,采用3种Brey经验模型对大型底栖动物次级生产力进行估算,并分析次级生产力与环境因子的关系。结果表明:(1)以去灰干重(ash-free dry weight,AFDW)计,Brey经验公式估算瓯江口和洞头列岛海域年均次级生产力分别为0.48 g(AFDW)m~(-2)a~(-1)和0.70 g(AFDW)m~(-2)a~(-1),Brey模型估算瓯江口和洞头列岛海域年均次级生产力分别为0.51 g(AFDW)m~(-2)a~(-1)和1.55 g(AFDW)m~(-2)a~(-1),Brey模型估算瓯江口和洞头列岛海域年均次级生产力分别为0.25 g(AFDW)m~(-2)a~(-1)和0.99 g(AFDW)m~(-2)a~(-1)。(2)3种经验模型反映大型底栖动物年均次级生产力空间分布趋势一致:瓯江口海域有1高值区,位于瓯江口南部;洞头列岛海域有2高值区,分别位于洞头本岛东北部的三盘岛与花岗岛之间和东黄岛东南部的岛屿之间。(3)瓯江口海域大型底栖动物年均次级生产力主要贡献种为双鳃内卷齿蚕Aglaophamus dibranchis、长吻沙蚕Glycera chirori、异蚓虫Heteromastus filiforms、焦河篮蛤Potamocorbula ustulata、薄云母蛤Yoldia similis、圆筒原盒螺Eocylichna braunsi,它们对次级生产力的贡献率超54.2%;洞头列岛海域大型底栖动物年均次级生产力主要贡献种为双鳃内卷齿蚕、异蚓虫、薄云母蛤、绒毛细足蟹Raphidopus ciliatus、隆线强蟹Eucrate crenata、脑纽虫Cerebratulina sp.、红狼牙鰕虎鱼Odontamblyopus rubicundus,它们对次级生产力的贡献率超57.1%。(4)次级生产力与环境因子的相关性分析显示化学需氧量、悬浮物和表层沉积物中值粒径是影响瓯江口海域大型底栖动物年均次级生产力的重要环境因子,而环境因子与洞头列岛海域大型底栖动物年均次级生产力相关关系不显著。(5)瓯江口海域Brey经验公式与Brey模型估算结果基本一致,洞头列岛海域Brey经验公式与Brey模型估算结果基本一致。 相似文献
258.
Zhibing Jiang Jiangning ZengQuanzhen Chen Yijun HuangXiaoqun Xu Yibo LiaoLu Shou Jingjing Liu 《Journal of thermal biology》2008
The tolerance of marine copepods to short-term thermal stress was measured by the median lethal temperature (LT50) tests in laboratory. Experiments on LT50 of copepods from different acclimation and acclimatization conditions collected from the Yueqing Bay were carried out under heat exposure for 15, 30 and 45 min. The LT50 of copepods decreased with increasing exposure time but increased with rising acclimation and acclimatization temperatures. However, the differences in copepod LT50 decreased with rising acclimatization temperatures, which suggested that entrained copepod mortality increased with raised water temperature due to the acute thermal stress of coastal power stations. Results also revealed that the thermal tolerance of Labidocera euchaeta was much higher than that of Calanus sinicus in spring. The thermal tolerances of different copepod species in summer were in the order, Pseudodiaptomus marinus, Acartia spinicauda, Acartia pacifica and L. euchaeta. 相似文献
259.
Krueger AC Xu Y Kati WM Kempf DJ Maring CJ McDaniel KF Molla A Montgomery D Kohlbrenner WE 《Bioorganic & medicinal chemistry letters》2008,18(5):1692-1695
The synthesis of several pyrrolidine inhibitor analogs is described that possess nanomolar in vitro potencies against the neuraminidase enzymes expressed by the B/Memphis/3/89 and A/N1/PR/8/34 influenza strains. 相似文献
260.
混菌发酵法广泛应用于维生素C前体2-酮基-L-古龙酸的生产.为进一步改善工艺,多年来,科研人员一直致力于研究发酵过程中两菌相互作用的科学本质.目前,随着组学技术、高通量技术、生物信息学和生理学等多种技术与学科的迅速发展,为深入研究相互作用分子机制提供了新的方法和工具.通过蛋白质组学、代谢组学、比较基因组学、转录组学等多种组学数据的挖掘和分析,提供了系统中各层次之间的相互作用关系网络.在此基础上结合高通量的生理学验证分析,为诠释两菌相互作用分子机制和开发代谢工程改造策略奠定了基础.本文就近些年来在该研究方向的进展及其应用进行了简要归纳,并提出进一步研究的方向. 相似文献