首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   10篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   15篇
  2012年   18篇
  2011年   16篇
  2010年   10篇
  2009年   15篇
  2008年   18篇
  2007年   22篇
  2006年   28篇
  2005年   21篇
  2004年   10篇
  2003年   6篇
  2002年   14篇
  2001年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1990年   2篇
  1982年   1篇
排序方式: 共有231条查询结果,搜索用时 781 毫秒
71.
Protein secondary structure predictions and amino acid long range contact map predictions from primary sequence of proteins have been explored to aid in modelling protein tertiary structures. In order to evaluate the usefulness of secondary structure and 3D-residue contact prediction methods to model protein structures we have used the known Q3 (alpha-helix,beta-strands and irregular turns/loops) secondary structure information, along with residue-residue contact information as restraints for MODELLER. We present here results of our modelling studies on 30 best resolved single domain protein structures of varied lengths. The results shows that it is very difficult to obtain useful models even with 100% accurate secondary structure predictions and accurate residue contact predictions for up to 30% of residues in a sequence. The best models that we obtained for proteins of lengths 37, 70, 118, 136 and 193 amino acid residues are of RMSDs 4.17, 5.27, 9.12, 7.89 and 9.69,respectively. The results show that one can obtain better models for the proteins which have high percent of alpha-helix content. This analysis further shows that MODELLER restrain optimization program can be useful only if we have truly homologous structure(s) as a template where it derives numerous restraints, almost identical to the templates used. This analysis also clearly indicates that even if we satisfy several true residue-residue contact distances, up to 30%of their sequence length with fully known secondary structural information, we end up predicting model structures much distant from their corresponding native structures.  相似文献   
72.
Two-photon microscopy: shedding light on the chemistry of vision   总被引:2,自引:0,他引:2  
Two-photon microscopy (TPM) has come to occupy a prominent place in modern biological research with its ability to resolve the three-dimensional distribution of molecules deep inside living tissue. TPM can employ two different types of signals, fluorescence and second harmonic generation, to image biological structures with subcellular resolution. Two-photon excited fluorescence imaging is a powerful technique with which to monitor the dynamic behavior of the chemical components of tissues, whereas second harmonic imaging provides novel ways to study their spatial organization. Using TPM, great strides have been made toward understanding the metabolism, structure, signal transduction, and signal transmission in the eye. These include the characterization of the spatial distribution, transport, and metabolism of the endogenous retinoids, molecules essential for the detection of light, as well as the elucidation of the architecture of the living cornea. In this review, we present and discuss the current applications of TPM for the chemical and structural imaging of the eye. In addition, we address what we see as the future potential of TPM for eye research. This relatively new method of microscopy has been the subject of numerous technical improvements in terms of the optics and indicators used, improvements that should lead to more detailed biochemical characterizations of the eyes of live animals and even to imaging of the human eye in vivo.  相似文献   
73.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.  相似文献   
74.
75.
76.
Heparin binding epidermal growth factor (HBEGF) is expressed in podocytes and was shown to play a role in glomerular physiology. MicroRNA binding sites on the 3'UTR of HBEGF were predicted using miRWalk algorithm and followed by DNA sequencing in 103 patients diagnosed with mild or severe glomerulopathy. A single nucleotide polymorphism, miRSNP C1936T (rs13385), was identified at the 3'UTR of HBEGF that corresponds to the second base of the hsa-miR-1207-5p seed region. When AB8/13 undifferentiated podocytes were transfected with miRNA mimics of hsa-miR-1207-5p, the HBEGF protein levels were reduced by about 50%. A DNA fragment containing the miRSNP allele-1936C was cloned into the pMIR-Report Luciferase vector and co-transfected with miRNA mimics of hsa-miR-1207-5p into AB8/13 podocytes. In agreement with western blot data, this resulted in reduced luciferase expression demonstrating the ability of hsa-miR-1207-5p to directly regulate HBEGF expression. On the contrary, in the presence of the miRSNP 1936T allele, this regulation was abolished. Collectively, these results demonstrate that variant 1936T of this miRSNP prevents hsa-miR-1207-5p from down-regulating HBEGF in podocytes. We hypothesized that this variant has a functional role as a genetic modifier. To this end, we showed that in a cohort of 78 patients diagnosed with CFHR5 nephropathy (also known as C3-glomerulopathy), inheritance of miRSNP 1936T allele was significantly increased in the group demonstrating progression to chronic renal failure on long follow-up. No similar association was detected in a cohort of patients with thin basement membrane nephropathy. This is the first report associating a miRSNP as genetic modifier to a monogenic renal disorder.  相似文献   
77.
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.  相似文献   
78.
Leaf color in some individuals of Cistus creticus turns transiently to red during winter, while neighboring individuals occupying the same site remain green. We have examined whether anthocyanin accumulation can be associated with variations in photosynthetic and/or photoprotective characteristics between the two phenotypes, rendering the red phenotype more vulnerable to photoinhibition and, accordingly, needing additional protection in the form of anthocyanins. Towards this aim, maximum (pre-dawn) and effective (mid-day) PSII photochemical efficiencies, xanthophyll cycle pool sizes and leaf nitrogen contents were seasonably followed, encompassing both the green (spring, summer, autumn) and the red (winter) period of the year. Moreover, the distribution of the two phenotypes in exposed and shaded sites was assessed. The frequency of red individuals was considerably higher in fully exposed sites, pointing to a photoprotective function of leaf anthocyanins. Yet, the assumption was not corroborated by pre-dawn PSII yield measurements, since both phenotypes displayed similar high values throughout the year and a similar drop during winter. However, the red phenotype was characterized by lower light-saturated PSII yields, xanthophyll cycle pool sizes and leaf nitrogen, during both the green and the red period of the year. Based on this correlative evidence, we suggest that winter redness in C. creticus may compensate for an inherent photosynthetic and photoprotective inferiority, possibly through a light screen and/or an antioxidant function of leaf anthocyanins.  相似文献   
79.
The impact of NPC1L1 and ezetimibe on cholesterol absorption are well documented. However, their potential consequences relative to absorption and metabolism of other nutrients have been only minimally investigated. Thus studies were undertaken to investigate the possible effects of this protein and drug on fat absorption, weight gain, and glucose metabolism by using Npc1l1(-/-) and ezetimibe-treated mice fed control and high-fat, high-sucrose diets. Results show that lack of NPC1L1 or treatment with ezetimibe reduces weight gain when animals are fed a diabetogenic diet. This resistance to diet-induced obesity results, at least in part, from significantly reduced absorption of dietary saturated fatty acids, particularly stearate and palmitate, since food intake did not differ between groups. Expression analysis showed less fatty acid transport protein 4 (FATP4) in intestinal scrapings of Npc1l1(-/-) and ezetimibe-treated mice, suggesting an important role for FATP4 in intestinal absorption of long-chain fatty acids. Concomitant with resistance to weight gain, lack of NPC1L1 or treatment with ezetimibe also conferred protection against diet-induced hyperglycemia and insulin resistance. These unexpected beneficial results may be clinically important, given the focus on NPC1L1 as a target for the treatment of hypercholesterolemia.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号