首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4856篇
  免费   539篇
  国内免费   803篇
  2024年   24篇
  2023年   117篇
  2022年   188篇
  2021年   328篇
  2020年   245篇
  2019年   312篇
  2018年   246篇
  2017年   184篇
  2016年   297篇
  2015年   368篇
  2014年   426篇
  2013年   454篇
  2012年   471篇
  2011年   466篇
  2010年   280篇
  2009年   222篇
  2008年   271篇
  2007年   196篇
  2006年   164篇
  2005年   123篇
  2004年   120篇
  2003年   119篇
  2002年   110篇
  2001年   79篇
  2000年   56篇
  1999年   59篇
  1998年   37篇
  1997年   40篇
  1996年   26篇
  1995年   20篇
  1994年   22篇
  1993年   24篇
  1992年   22篇
  1991年   17篇
  1990年   20篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1950年   1篇
排序方式: 共有6198条查询结果,搜索用时 187 毫秒
131.
Fatty acid synthase (FASN) is a key enzyme in the synthesis of palmitate, the precursor of major nutritional, energetic, and signaling lipids. FASN expression is upregulated in many human cancers and appears to be important for cancer cell survival. Overexpression of FASN has also been found to associate with poor prognosis and higher risk of recurrence of human cancers. Indeed, elevated FASN expression has been shown to contribute to drug resistance. However, the mechanism of FASN-mediated drug resistance is currently unknown. In this study, we show that FASN overexpression causes resistance to multiple anticancer drugs via inhibiting drug-induced ceramide production, caspase 8 activation, and apoptosis. We also show that FASN overexpression suppresses tumor necrosis factor-α production and nuclear factor-κB activation as well as drug-induced activation of neutral sphingomyelinase. Thus, TNF-α may play an important role in mediating FASN function in drug resistance.  相似文献   
132.
BMP4 has been shown to induce C3H10T1/2 pluripotent stem cells to commit to adipocyte lineage. In addition to several proteins identified, microRNAs also play a critical role in the process. In this study, we identified microRNA-140 (miR-140) as a direct downstream component of the BMP4 signaling pathway during the commitment of C3H10T1/2 cells to adipocyte lineage. Overexpression of miR-140 in C3H10T1/2 cells promoted commitment, whereas knockdown of its expression led to impairment. Additional studies indicated that Ostm1 is a bona fide target of miR-140, which is significantly decreased during commitment, and Ostm1 was also demonstrated to function as an anti-adipogenic factor.  相似文献   
133.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   
134.
135.
136.
CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm2) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells.  相似文献   
137.
138.
Using the fluorescent dyes calcein and alcian blue, we stained the F3 generation of chemically (ENU) mutagenized zebrafish embryos and larvae, and screened for mutants with defects in bone development. We identified a mutant line, bone calcification slow (bcs), which showed delayed axial vertebra calcification during development. Before 4–5 days post-fertilization (dpf), the bcs embryos did not display obvious abnormalities in bone development (i.e., normal number, size and shape of cartilage and vertebrae). At 5–6 dpf, when vertebrae calcification starts, bcs embryos began to show defects. At 7 dpf, for example, in most of the bcs embryos examined, calcein staining revealed no signals of vertebrae mineralization, whereas during the same developmental stages, 2–14 mineralized vertebrae were observed in wild-type animals. Decreases in the number of calcified vertebrae were also observed in bcs mutants when examined at 9 and 11 dpf, respectively. Interestingly, by 13 dpf the defects in bcs mutants were no longer evident. There were no significant differences in the number of calcified vertebrae between wild-type and mutant animals. We examined the expression of bone development marker genes (e.g., Sox9b, Bmp2b, and Cyp26b1, which play important roles in bone formation and calcification). In mutant fish, we observed slight increases in Sox9b expression, no alterations in Bmp2b expression, but significant increases in Cyp26b1 expression. Together, the data suggest that bcs delays axial skeletal calcification, but does not affect bone formation and maturation.  相似文献   
139.
140.
Hongbin Wang  Xi Chen  Teng He  Yanna Zhou  Hong Luo 《Genetics》2013,195(4):1291-1306
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号