首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   107篇
  国内免费   3篇
  2023年   7篇
  2022年   17篇
  2021年   17篇
  2020年   14篇
  2019年   13篇
  2018年   21篇
  2017年   16篇
  2016年   39篇
  2015年   57篇
  2014年   60篇
  2013年   82篇
  2012年   86篇
  2011年   96篇
  2010年   51篇
  2009年   38篇
  2008年   56篇
  2007年   42篇
  2006年   42篇
  2005年   44篇
  2004年   49篇
  2003年   39篇
  2002年   40篇
  2001年   29篇
  2000年   20篇
  1999年   24篇
  1998年   10篇
  1997年   7篇
  1996年   13篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   19篇
  1991年   12篇
  1990年   6篇
  1989年   5篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1985年   11篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1973年   9篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1208条查询结果,搜索用时 828 毫秒
201.
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.  相似文献   
202.
Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3′ processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 Å and 2.0 Å, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.  相似文献   
203.
Xie C  Tang X  Xu W  Diao R  Cai Z  Chan HC 《PloS one》2010,5(12):e15255

Background

Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated.

Methodology/Principal Findings

In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl and HCO3 , in mediating prostate HCO3 secretion and its possible role in bacterial killing. Upon Escherichia coli (E coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO3 content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO3 on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E coli. The relevance of the CFTR-mediated HCO3 secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues.

Conclusions/Significance

The CFTR and its mediated HCO3 secretion may be up-regulated in prostatitis as a host defense mechanism.  相似文献   
204.
The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-α. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK.  相似文献   
205.
206.
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is highly expressed in embryonic stem cells (ESCs) and its role in maintenance of pluripotency has been suggested previously. In epithelial cancer cells, activation of the EpCAM surface-to-nucleus signaling transduction pathway involves a number of membrane proteins. However, their role in somatic cell reprogramming is still unknown. Here we demonstrate that EpCAM and its associated protein, Cldn7, play a critical role in reprogramming. Quantitative RT-PCR analysis of Oct4, Sox2, Klf4, and c-Myc (OSKM) infected mouse embryonic fibroblasts (MEFs) indicated that EpCAM and Cldn7 were up-regulated during reprogramming. Analysis of numbers of alkaline phosphatase- and Nanog-positive clones, and the expression level of pluripotency-related genes demonstrated that inhibition of either EpCAM or Cldn7 expression resulted in impairment in reprogramming efficiency, whereas overexpression of EpCAM, EpCAM plus Cldn7, or EpCAM intercellular domain (EpICD) significantly enhanced reprogramming efficiency in MEFs. Furthermore, overexpression of EpCAM or EpICD significantly repressed the expression of p53 and p21 in the reprogramming MEFs, and both EpCAM and EpICD activated the promoter activity of Oct4. These observations suggest that EpCAM signaling may enhance reprogramming through up-regulation of Oct4 and possible suppression of the p53-p21 pathway. In vitro and in vivo characterization indicated that the EpCAM-reprogrammed iPSCs exhibited similar molecular and functional features to the mouse ESCs. In summary, our studies provide additional insight into the molecular mechanisms of reprogramming and suggest a more effective means of induced pluripotent stem cell generation.  相似文献   
207.
Research on orchid biology and biotechnology   总被引:1,自引:0,他引:1  
Orchidaceae constitute one of the largest families of angiosperms. They are one of the most ecological and evolutionary significant plants and have successfully colonized almost every habitat on earth. Because of the significance of plant biology, market needs and the current level of breeding technologies, basic research into orchid biology and the application of biotechnology in the orchid industry are continually endearing scientists to orchids in Taiwan. In this introductory review, we give an overview of the research activities in orchid biology and biotechnology, including the status of genomics, transformation technology, flowering regulation, molecular regulatory mechanisms of floral development, scent production and color presentation. This information will provide a broad scope for study of orchid biology and serve as a starting point for uncovering the mysteries of orchid evolution.  相似文献   
208.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a malignant arrhythmogenic disorder linked to mutations in the cardiac ryanodine receptor (RyR2) and calsequestrin, predisposing the young to syncope and cardiac arrest. To define the role of β-adrenergic stimulation (BAS) and to identify potential therapeutic targeted sites relating to intracellular calcium cycling, we used a Luo-Rudy dynamic ventricular myocyte model incorporated with interacting Markov models of the L-type Ca(2+) channel (I(Ca,L)) and RyR2 to simulate the heterozygous state of mouse RyR2 R4496C mutation (RyR2(R4496C+/-)) comparable with CPVT patients with RyR2 R4497C mutation. Characteristically, in simulated cells, pacing at 4 Hz or faster or pacing at 2 Hz under BAS with effects equivalent to those of isoproterenol at ≥ 0.1 μM could readily induce delayed afterdepolarizations (DADs) and DAD-mediated triggered activity (TA) in RyR2(R4496C+/-) but not in the wild-type via enhancing both I(Ca,L) and sarcoplasmic reticulum (SR) Ca(2+) ATPase (I(UP)). Moreover, with the use of steady state values of isolated endocardial (Endo), mid-myocardial (M), and epicardial (Epi) cells as initial data for conducting single cell and one-dimensional strand studies, the M cell was more vulnerable for developing DADs and DAD-mediated TA than Endo and Epi cells, and the gap junction coupling represented by diffusion coefficient (D) of ≤ 0.000766*98 cm(2)/ms was required for generating DAD-mediated TA in RyR2(R4496C+/-). Whereas individual reduction of Ca(2+) release channel of SR and Na-Ca exchanger up to 50% was ineffective, 30% or more reduction of either I(Ca,L) or I(UP) could totally suppress the inducibility of arrhythmia under BAS. Of note, 15% reduction of both I(Ca,L) and I(UP) exerted a synergistic antiarrhythmic efficacy. Findings of this model study confirm that BAS facilitates induction of ventricular tachyarrhythmias via its action on intracellular Ca(2+) cycling and a pharmacological regimen capable of reducing I(Ca,L) could be an effective adjunctive to β-adrenergic blockers for suppressing ventricular tachyarrhythmias during CPVT.  相似文献   
209.
The iron binding properties and antioxidant activities of compounds with hydroxy-keto binding sites, 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin were investigated. For these compounds, prevention of iron-mediated DNA damage and kinetics of FeII oxidation were studied in aqueous solutions close to physiological pH (pH 6). 3-Hydroxychromone and sulfonated morin inhibit iron-mediated DNA damage at lower concentrations than 5-hydroxychromone. All three compounds bind iron, but 3-hydroxychromone and sulfonated morin promote FeII oxidation much faster than 5-hydroxychromone. These results indicate that DNA damage inhibition by flavonols with competing hydroxy-keto binding sites is primarily due to iron binding at the 3-hydroxy-keto site. Iron oxidation rate also plays a significant role in antioxidant activity. In addition to iron binding and oxidation, reactive oxygen species scavenging occurs at high concentrations for the hydroxychromones. This study emphasizes the importance of iron binding in polyphenol antioxidant behavior and provides insights into the iron binding antioxidant activity of similar flavonols such as quercetin and myricetin.  相似文献   
210.
Su TR  Hung YS  Huang SS  Su HH  Su CC  Hsiao G  Chen YH  Lin MJ 《Life sciences》2011,88(23-24):1039-1046
AimsThe aim of this study was to investigate the mechanism for the reversal effect of NF449 (a suramin analogue) on the neuromuscular block induced by d-tubocurarine (d-TC).Main methodsNerve-stimulated muscle contractions and end-plate potentials were performed in mouse phrenic nerve-diaphragm preparations. Acetylcholine (ACh)-induced muscle contractions were performed in the chick biventer cervicis preparations. Presynaptic nerve terminal waveform recordings were performed in mouse triangularis sterni preparations.Key findingsAmongst the suramin analogues in this study, only the NF449 and suramin were able to reverse the blockade effect produced by d-TC on nerve-stimulated muscle contractions. Each of these suramin analogues (NF007, NF023, NF279 and NF449) alone has no significant effect on the amplitude of nerve-stimulated muscle contractions. NF449 and suramin also showed the antagonising effects on the inhibition of end-plate potentials induced by d-TC. Furthermore, pre-treatment with NF449 can antagonise the inhibition of d-TC in ACh-induced contractions of chick biventer cervicis muscle. NF449 produced a greater rightward shift of the dose–response inhibition curve for d-TC than did suramin. Because other purinergic 2X (P2X) receptor antagonists, NF023 and NF279, do not have the reverse effects on the neuromuscular blockade of d-TC, the effect of NF449 seems irrelevant to inhibition of P2X receptors.SignificanceThese data suggest that NF449 was able to compete with the binding of d-TC on the nicotinic ACh receptors, and the effect of NF449 was more potent than suramin in reducing the inhibition of d-TC. The structure of NF449 may provide useful information for designing potent antidotes against neuromuscular toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号