首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1780篇
  免费   74篇
  国内免费   128篇
  2024年   1篇
  2023年   26篇
  2022年   49篇
  2021年   87篇
  2020年   55篇
  2019年   71篇
  2018年   54篇
  2017年   38篇
  2016年   66篇
  2015年   103篇
  2014年   112篇
  2013年   119篇
  2012年   183篇
  2011年   157篇
  2010年   82篇
  2009年   75篇
  2008年   106篇
  2007年   83篇
  2006年   80篇
  2005年   61篇
  2004年   64篇
  2003年   46篇
  2002年   26篇
  2001年   38篇
  2000年   25篇
  1999年   20篇
  1998年   16篇
  1997年   17篇
  1996年   14篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1982条查询结果,搜索用时 31 毫秒
991.
992.
Hydroponic experiments were carried out using seedlings of the wetland halophyte species Kosteletzkya virginica (L.) Presl. exposed to 10???M Cd or 100???M Zn in the absence or presence of 50?mM NaCl. Interaction between salinity and heavy metals was analysed in relation to plant growth, water status and tissue ion contents (Na, K and Ca). Results showed a strong inhibition effect of Cd on leaf emergence, lateral branch development and leaf expansion. Heavy metals induced a significant decrease in plant dry weight, water content, osmotic potential (?? S) and leaf water potential (?? w). Cadmium and Zn accumulated to higher extent in the roots than in the shoots. Cadmium increased the leaf K concentration while Zn had an opposite effect. Salinity strongly reduced Cd uptake and translocation from roots to shoots: it mitigated the Cd impact on lateral branch emergence but had no effects on plant dry weight and water status. Cadmium drastically reduced Na translocation in salt-treated plants while Zn increased it. It is concluded that complex interactions exist between heavy metals and monovalent cations in salt conditions and that Cd and Zn display contrasting behaviour in this respect. Stress-induced modification of ion content did not fully explain growth inhibition in Kosteletzkya virginica.  相似文献   
993.
The thermogenic curves of metabolism of two strains of Escherichia coli pUC19cab/XL-IBlue and XL-IBlue have been determined by using a LKB-2277 bioActivity Monitor and ampoule method at 37°C. pUC19cab/XL-IBlue was a recombinant E. coli strain bearing a foreign plasmid pUC19cab which brought the polyhydroxyalkanoates (PHAs) production. XL-IBlue was a host bacterium without any foreign DNA. Our studies reveal that the PHA production of recombinant E. coli has an apparent influence on their thermogenic curves of metabolism and therefore the initial time of PHAs production can be determined from these thermogenic curves. The text was submitted by the authors in English.  相似文献   
994.
Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs.  相似文献   
995.
996.
This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of H1, H3, H5, H7, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10−5(= 280ELD50) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10−4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.Key words: Influenza Virus, General multiplex RT-PCR, Iuminex assay, Subtyping, HA and NA genes  相似文献   
997.
998.
As activation of the Ras/Raf/MEK/ERK pathway is a critical component of M-CSF-promoted osteoclast survival, determining specific mechanism by which M-CSF activates this signal transduction pathway is paramount towards advancing treatment of pathological conditions resulting in increased bone turnover. The p21 activated kinase PAK1 modulates activation of the Raf/MEK/ERK pathway by either directly activating Raf or priming MEK for activation by Raf. Therefore a role for PAK1 in M-CSF-mediated activation of the MEK/ERK pathway controlling osteoclast survival was assessed. Here we show that PAK1 is activated by M-CSF in a Ras-dependent mechanism that promotes osteoclast survival. Surprisingly, PAK1 did not modulate Raf activation or Raf-mediated MEK activation. M-CSF mediated activation of Raf was required for PAK1 activation and osteoclast survival promoted by PAK1. This survival response was MEK-independent as expression of constitutively active MEK did not rescue osteoclasts from apoptosis induced by blocking PAK1 function. Functionally, PAK1 promoted osteoclast survival by modulating expression of the IAP family member Survivin. M-CSF therefore functions to promote PAK1 activation as a novel MEK-independent Raf target to control Survivin-mediated osteoclast survival.  相似文献   
999.
Recently, we reported that a novel hybrid enzyme (TriCat enzyme), engineered by linking human cyclooxygenase-2 (COX-2) with prostacyclin (PGI2) synthase (PGIS) together through a transmembrane domain, was able to directly integrate the triple catalytic (TripCat) functions of COX-2 and PGIS and effectively convert arachidonic acid (AA) into the vascular protector, PGI2 [K.H. Ruan, H. Deng, S.P. So, Biochemistry 45 (2006) 14003-14011]. In order to confirm the important biological activity and evaluate its therapeutic potential, it is critical to characterize the properties of the enzyme using the purified protein. The TriCat enzyme cDNA was subcloned into a baculovirus vector and its protein was expressed in Sf-9 cells in large-scale with a high-yield (∼4% of the total membrane protein), as confirmed by Western blot and protein staining. The Sf-9 cells’ membrane fraction, rich in TriCat enzyme, exhibited strong TriCat functions (Km = 3 μM and Kcat = 100 molecules/min) for the TriCat enzyme and was 3-folds faster in converting AA to PGI2 than the combination of the individual COX-2 and PGIS. Another superiority of the TriCat enzyme is its dual effect on platelet aggregation: it completely inhibited platelet aggregation at the low concentration of 2 μg/ml and then displayed the ability to reverse the initially aggregated platelets to their non-aggregated state. Furthermore, multiple substrate-binding sites were confirmed in the single protein by high-resolution NMR spectroscopy, using partially purified TriCat enzyme. These studies have clearly demonstrated that the isolated TriCat enzyme protein functions in the selective biosynthesis of the vascular protector, PGI2, and revealed its potential for anti-thrombosis therapeutics.  相似文献   
1000.
CLEC-2 was first identified by sequence similarity to C-type lectin-like molecules with immune functions. Recently, human CLEC-2 has been reported as a receptor for the platelet-aggregating snake venom toxin rhodocytin and the endogenous sialoglycoprotein podoplanin. It has also been reported to facilitate the capture of HIV-1. However, investigation of mouse CLEC-2 (mCLEC-2) has little progressed after its identification. In this study, we identified two novel splicing variants of mCLEC-2 derived from omission of exon 2 and 2/4, respectively. These two variants had different expression profiles and subcellular localization from full-length mCLEC-2. Moreover, we observed that full-length mCLEC-2 could be cleaved probably by proteases sensitive to aprotinin and PMSF into a soluble form that partially existed as a disulfide-linked homodimer. The results presented here represent a further advancement toward the understanding of mCLEC-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号