首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1778篇
  免费   74篇
  国内免费   130篇
  1982篇
  2024年   1篇
  2023年   26篇
  2022年   49篇
  2021年   87篇
  2020年   55篇
  2019年   71篇
  2018年   54篇
  2017年   38篇
  2016年   66篇
  2015年   103篇
  2014年   112篇
  2013年   119篇
  2012年   183篇
  2011年   157篇
  2010年   82篇
  2009年   75篇
  2008年   106篇
  2007年   83篇
  2006年   80篇
  2005年   61篇
  2004年   64篇
  2003年   46篇
  2002年   26篇
  2001年   38篇
  2000年   25篇
  1999年   20篇
  1998年   16篇
  1997年   17篇
  1996年   14篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1982条查询结果,搜索用时 0 毫秒
981.
Peng  Zhenying  Ruan  Jian  Tian  Haiying  Shan  Lei  Meng  Jingjing  Guo  Feng  Zhang  Zhimeng  Ding  Hong  Wan  Shubo  Li  Xinguo 《Plant Molecular Biology Reporter》2020,38(2):209-221
Plant Molecular Biology Reporter - The synthesis of α-linolenic acid (ALA) requires the activity of ω-3 fatty acid desaturases (ω-3 FADs). The quality of peanut oil would be much...  相似文献   
982.
983.
984.
P2 receptors have been implicated in the release of neurotransmitter and proinflammatory cytokines by the response to neuroexcitatory substances in astrocytes. In the present study, we examined the mechanisms of ADP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS, ADP analogue) on glutamate release from cultured dorsal spinal cord astrocytes by using confocal laser scanning microscopy and HPLC. Immunofluorescence activity showed that P2Y1 receptor protein is expressed in cultured astrocytes. ADP and ADPbetaS-induced [Ca2+]i increase and glutamate release are mediated by P2Y1 receptor. Ca2+ release from IP3-sensitive calcium stores and protein kinase C (PKC) activation is important for glutamate release from astrocytes. Furthermore, P2Y1 receptor-evoked glutamate release is regulated by volume-sensitive Cl channels and anion co-transporter, which open up the possibility that P2Y1 receptor activation causes the increase of cell volume. Release of glutamate by ADPbetaS was abolished by 5-nitro-2 (3-phenyl propy lamino)–benzoate plus furosemide but was unaffected by botulinum toxin A. These observations indicate that P2Y1 receptor-evoked glutamate may be mediated via volume-sensitive Cl channel but not via exocytosis of glutamate containing vesicles. We speculate that P2Y1 receptors-evoked glutamate efflux, occurring under pathological condition, may modulate the activity of synapses in spinal cord.  相似文献   
985.
986.
Aminoacyl-tRNA synthetase (aaRS) catalyzes the first step of protein synthesis, producing aminoacyl-tRNAs as building blocks. Eukaryotic aaRS differs from its prokaryotic counterpart in terminal extension or insertion. Moreover, the editing function of aaRSs is an indispensable checkpoint excluding non-cognate amino acids at a given codon and ensuring overall translational fidelity. We found higher eukaryotes encode two cytoplasmic threonyl-tRNA synthetases (ThrRSs) with difference in N-terminus. The longer isoform is more closely related to the ThrRSs of higher eukaryotes than to those of lower eukaryotes. A yeast strain was generated to include deletion of the thrS gene encoding ThrRS. Combining in vitro biochemical and in vivo genetic data, ThrRSs from eukaryotic cytoplasm were systematically analyzed, and role of the eukaryotic cytoplasmic ThrRS-specific N-terminal extension was elucidated. Furthermore, the mechanisms of aminoacylation and editing activity mediated by Saccharomyces cerevisiae ThrRS (ScThrRS) were clarified. Interestingly, yeast cells were tolerant of variation at the editing active sites of ScThrRS without significant Thr-to-Ser conversion in the proteome even under significant environmental stress, implying checkpoints downstream of aminoacylation to provide a further quality control mechanism for the yeast translation system. This study has provided the first comprehensive elucidation of the translational fidelity control mechanism of eukaryotic ThrRS.  相似文献   
987.
The phenotypic transformation of hepatic myofibroblasts (MFs) is involved in the whole process of the progression and regression of liver fibrosis. Notch signaling has been demonstrated to modulate the fibrosis. In this study, we found that Notch signaling in MFs was overactivated and suppressed with the progression and regression of hepatic fibrosis respectively, by detecting Notch signaling readouts in MFs. Moreover, we inactivated Notch signaling specifically in MFs with Sm22αCreER-RBPjflox/flox mice (RBPjMF-KO), and identified that MFs-specific down-regulation of Notch signaling significantly alleviated CCl4-induced liver fibrosis during the progression and regression. During the progression of liver fibrosis, MFs-specific blockade of Notch signaling inhibited the activation of HSCs to MFs and increases the expression of MMPs to reduce the deposition of ECM. During the regression of fibrosis, blocking Notch signaling in MFs increased the expression of HGF to promote proliferation in hepatocytes and up-regulated the expression of pro-apoptotic factors, Ngfr and Septin4, to induce apoptosis of MFs, thereby accelerating the reversal of fibrosis. Collectively, the MFs-specific disruption of Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression, which suggests a promising therapeutic strategy for liver fibrosis.  相似文献   
988.
We consider plankton-nutrient interaction models consisting of phytoplankton, herbivorous zooplankton and dissolved limiting nutrient with general nutrient uptake functions and instantaneous nutrient recycling. For the model with constant nutrient input and different constant washout rates, conditions for boundedness of the solutions, existence and stability of non-negative equilibria, as well as persistence are given. We also consider the zooplankton-phytoplankton-nutrient interaction models with a fluctuating nutrient input and with a periodic washout rate, respectively. It is shown that coexistence of the zooplankton and phytoplankton may arise due to positive bifurcating periodic solutions.Research has been supported in part by a University of Alberta Ph.D. Scholarship and is in part based on the author's Ph.D. thesis under the supervision of Professor H. 1. Freedman, to whom the author owes a debt of appreciation and gratitude for his kind advice, helpful comments and continuous encouragement  相似文献   
989.
Twenty days’ exposure to 50 or 100 mM NaCl in the rooting medium substantially increased fresh and dry weights of seedling shoots of the recretohalophyte Limonium sinense while 200 or 300 mM were increasingly inhibitory. KCl treatment was only slightly stimulating (50 mM) or strongly inhibitory (100–300 mM). Lesser effects on leaf area were also seen. Diameter of foliar salt glands was significantly larger than that of controls in 100 and 200 mM NaCl with the effect being reversed at higher concentrations. Gland enlargement was also observed in the presence of 100 mM KCl, while larger concentrations reduced gland size. Generally, gland diameter was larger in the presence of NaCl than in KCl. NaCl and KCl also increased gland number per leaf and secretion rate per gland. At 100 and 200 mM NaCl or KCl, Na+ secretion per leaf from NaCl-treated plants exceeded K+ secretion rate from KCl-treated plants while at 200 mM, Na+ secretion per gland was significantly higher for Na+ than for K+. Evidence of cell death in leaves of salt-treated plants using Evans blue staining indicates that release of cell contents through loss of membrane integrity contributed to the secretion values. We conclude that the greater tolerance of L. sinenseto to NaCl compared to KCl is linked to the more effective secretion of Na+ than of K+ and, in turn, to a greater stimulation of salt gland formation and activity and larger gland diameter.  相似文献   
990.

Objectives

To investigate the expression and role of Cathepsin L (CTSL) in Hepatocellular carcinoma (HCC) tissue and cell line (MHCC-97H), and to evaluate the clinical and prognostic significance of CTSL protein in patients with HCC.

Methods

The expression of CTSL was examined in HCC tissue and MHCC-97H cells by Western-blotting, Real-time PCR and immunohistochemical staining. Cell growth curve assay and colony formation assay were used to verify the effect of CTSL on the proliferation and tumor progression ability of MHCC-97H cells. Tumor formation assay in nude mice was used to analyze the effect of CTSL on the tumorigenicity of MHCC-97H cells.

Results

The status of CTSL protein in carcinoma tissues is much higher than that in paracarcinoma tissues. The overall survival of the patients with high CTSL expression was significantly shorter than the low CTSL expression group. high CTSL expression was significantly correlated with advanced clinical staging, histological grade and tumor recurrence. In vitro experiments demonstrated that over-expression of CTSL in MHCC-97H cells promoted cell proliferation and tumor progression ability. Down-regulation of CTSL showed the opposite effects. Over-expression of CTSL increase the tumorigenicity of MHCC-97H cells by in vivo experiments. Moreover, multivariate analysis suggested that CTSL expression might be an independent prognostic indicator for the survival of HCC patients after curative surgery.

Conclusions

CTSL might involve in the development and progression of HCC as a oncogene, and thereby may be a valuable prognostic marker for HCC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号