首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   5篇
  国内免费   18篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   9篇
  2015年   12篇
  2014年   13篇
  2013年   18篇
  2012年   22篇
  2011年   26篇
  2010年   7篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2000年   4篇
  1998年   1篇
  1996年   1篇
  1986年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
81.
利用脉冲梯度电泳(PFGE)分离酿酒酵母A364aV号染色体DNA,克隆在酵母的整合型载体YIp5中,得到染色体专一的基因库。从该基因库克隆的16类ARS,接近估计的酵母Ⅴ号染色体复制子数目,基本覆盖Ⅴ号染色体。同源性分析发现酵母Ⅴ号染色体的绝大部分ARS之间不具同源性或存在极低的同源性。  相似文献   
82.
Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.  相似文献   
83.
Inflammation is a pathogenic factor in renal injury, but whether inflammation is related to renal outcome in chronic kidney disease (CKD) patients is little known. We thus assess the association of inflammation and renal outcome in an advanced CKD cohort. This study analyzed the association between inflammatory markers, such as C-reactive protein (hsCRP), white blood cell (WBC) count and ferritin, renal replacement therapy (RRT) and rapid renal progression (estimated GFR slope<-6 ml/min/1.73 m2/y) in 3303 patients with stage 3–5 CKD. In all subjects, the mean hsCRP, WBC count, and ferritin levels were 1.2 (0.4, 5.4) mg/L, 7.2±2.3×103 cells/µL, and 200 (107,349) ng/mL, respectively. During a mean 3.2-year follow-up, there were 1080 (32.7%) subjects commencing RRT, and 841(25.5%) subjects presenting rapid renal progression. Both hsCRP and ferritin were associated with increased risk for RRT with the adjusted HR (tertile 3 versus tertile 1∶1.17 〔1.01–1.36〕 and 1.20 〔1.03–1.40〕, respectively). Both hsCRP and ferritin were associated with increased odds for rapid renal progression with the adjusted OR (tertile 3 versus tertile 1∶1.40 〔1.13–1.77〕 and 1.32 〔1.06–1.67〕, respectively). hsCRP and ferritin stratified by albumin were also associated with RRT and rapid renal progression. Instead, WBC count was not associated with renal outcome. In conclusion, elevated levels of hsCRP and ferritin are risk factors associated with RRT and rapid renal progression in advanced CKD patients.  相似文献   
84.
从传统中药川牛膝(Cyathula offcinalis kuan)中分离提取到了一种具有生物活性的多糖RCP.核磁共振、甲基化分析、还原裂解和GC-MS分析揭示了RCP是一高度分支的果聚糖,它以(2→1)连接为骨架,其上有大量的(2→6)连接的分支,且属于新蔗果三糖系列.在93.17%果糖残基中,24.15%是末端果糖,26.24%是1-连接果糖,20.46%是6-连接果糖.在6.83%的葡萄糖残基中,2.14%是末端葡萄糖,4.69%是6-连接葡萄糖.RCP的平均聚合度是15.  相似文献   
85.

Background

Carbonic anhydrase 8 (CA8) is an isozyme of α-carbonic anhydrases (CAs). Previous studies showed that CA8 can be detected in human adult brain, with more intense expression in the cerebellum. Single mutations in CA8 were reported to cause novel syndromes like ataxia, mild mental retardation or the predisposition to quadrupedal gait.

Methods

In the present study, we examine the functions of CA8 in neuronal cell lines, mouse cerebellar granule neurons and zebrafish.

Results and conclusions

We demonstrated that overexpression of CA8 in neuronal cells significantly decreased cell death under staurosporine treatment. Moreover, CA8 overexpression significantly increased cell migration and invasion ability in neuronal cells and in mouse cerebellar granule neurons, implicating that CA8 may be involved in neuron motility and oncogenesis. By using zebrafish as an animal model, motor reflection of 3 dpf zebrafish embryos was significantly affected after the down-regulation of CA8 through ca8 morpholino.

Conclusions

We concluded that CA8 overexpression desensitizes neuronal cells to STS induced apoptotic stress and increases cell migration and invasion ability in neuronal cells. In addition, down-regulated CA8 decreases neuron mobility in neuronal cells and leads to abnormal calcium release in cerebellar granule neurons. Knockdown of the ca8 gene results in an abnormal movement pattern in zebrafish.

General significance

Our findings provide evidence to support that the impaired protective function of CA8 contributes to human neuropathology, and to suggest that zebrafish can be used as an animal model to study the biological functions of human CA8 in vivo.  相似文献   
86.
87.
The adrenal cortex has a complex vasculature that is essential for growth, tissue maintenance, and access of secreted steroids to the bloodstream. However, the interaction between vasculature and adrenal cortex during early organogenesis remains largely unclear. In this study, we focused on the zebrafish counterpart of adrenal cortex, interrenal tissue, to explore the possible role of endothelium in the development of steroidogenic tissues. The ontogeny of interrenal tissue was found to be tightly associated with the endothelial cells (ECs) that constitute the axial vessels. The early interrenal primordia emerge as two clusters of cells that migrate centrally and converge at the midline, whereas the central convergence was abrogated in the avascular cloche (clo) mutant. Neither loss of blood circulation nor perturbations of vessel assembly could account for the interrenal convergence defect, implying a role of endothelial signaling prior to the formation of axial blood vessels. Moreover, as the absence of trunk endothelium in clo mutant was rescued by the forced expression of SCL, the interrenal fusion defect could be alleviated. We thus conclude that endothelial signaling is involved in the morphogenetic movement of early interrenal tissue.  相似文献   
88.
Capillary plexuses form during both vasculogenesis and angiogenesis and are remodeled into mature vessel types and patterns which are delicately orchestrated with the sizes and shapes of other tissues and organs. We isolated a zebrafish mutation named prp (for persistent plexus) that causes persistent formation of vascular plexuses in the caudal fins and consequent mispatterning of bony fin rays and the fin shape. Detailed analyses revealed that the prp mutation causes a significant reduction in the size and dramatic structural defects in collagen II-rich extracellular matrices called actinotrichia of both embryonic finfolds and adult fins. prp was mapped to chromosome 19 and found to encode the zebrafish collagen9α1 (col9α1) gene which is abundantly expressed in developing finfolds. A point mutation resulting in a leucine-to-histidine change was detected in the thrombospondin domain of the col9α1 gene in prp. Morpholino-mediated knockdown of col9α1 phenocopied the prp small-finfold phenotype in wild-type embryos, and an injection of plasmids containing the col9α1 cDNA into prp embryos locally restored the finfold size. Furthermore, we found that osteoblasts in prp mutants were mispatterned apparently following the abnormal vascular plexus pattern, demonstrating that blood vessels play an important role in the patterning of bony rays in zebrafish caudal fins.  相似文献   
89.
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin αvβ3 is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the αvβ3 receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the αvβ3 integrin/integrin-linked kinase/ERK signaling pathway.  相似文献   
90.
Organic cation/carnitine transporter 2 (OCTN2) is responsible for the cellular uptake of the antineoplastic agent, oxaliplatin. Epigenetic modification is a possible mechanism of altered drug-transporter expression in cancers, leading to altered efficacy of chemotherapeutic drugs. However, the mechanisms governing OCTN2 regulation are not completely understood. In this study, the low levels of OCTN2 in HepG2 and LS174T cells were elevated by the demethylating reagent, decitabine (DCA). To further reveal the epigenetic mechanism of down-regulation of OCTN2, we found that Region-1 within the OCTN2 promoter (spanning −354 to +85) was a determinant of OCTN2 expression in a luciferase reporter assay. Moreover, methylation-specific PCR (MSP) and bisulfite genomic sequencing showed that the degree of individual methylated CpG sites within this region was inversely correlated with the levels of OCTN2 in different cancer cells. Application of DCA to HepG2 and LS174T cells reversed the hypermethylation status of the OCTN2 promoter and increased OCTN2 expression, enhancing cellular uptake of oxaliplatin. Thus, we identified that promoter methylation is responsible for epigenetic down-regulation of OCTN2 in HepG2 and LS174T cells. Given the essential role of OCTN2 in cancer cell uptake of chemotherapeutics, and thus treatment efficacy, pretreatment with a demethylating reagent is a possible strategy for optimizing pharmacotherapies against cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号