首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4891篇
  免费   439篇
  国内免费   12篇
  5342篇
  2023年   12篇
  2022年   49篇
  2021年   82篇
  2020年   28篇
  2019年   41篇
  2018年   71篇
  2017年   48篇
  2016年   119篇
  2015年   248篇
  2014年   265篇
  2013年   326篇
  2012年   447篇
  2011年   394篇
  2010年   208篇
  2009年   182篇
  2008年   243篇
  2007年   249篇
  2006年   234篇
  2005年   216篇
  2004年   202篇
  2003年   173篇
  2002年   163篇
  2001年   148篇
  2000年   136篇
  1999年   106篇
  1998年   50篇
  1997年   39篇
  1996年   40篇
  1995年   30篇
  1994年   30篇
  1993年   31篇
  1992年   70篇
  1991年   70篇
  1990年   59篇
  1989年   61篇
  1988年   58篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   31篇
  1983年   22篇
  1982年   14篇
  1981年   17篇
  1979年   26篇
  1978年   23篇
  1977年   14篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
排序方式: 共有5342条查询结果,搜索用时 15 毫秒
91.
In a previous study, we demonstrated that baicalein induces hydroxyl radical formation in human platelets but the mechanisms are unclear. Herein, we show, using an electron spin resonance technique, that baicalein also induces hydroxyl radical formation in B16F10 melanoma cells in a dose-dependent manner. Baicalein produced superoxide anions in the presence of an iron chelator and superoxide dismutase (SOD) inhibitor. We suggest that superoxide anions produced by baicalein were promptly converted to hydroxyl radicals through SOD and the Fenton reaction in B16F10 melanoma cells. According to Western blotting results, the 12-LOX protein was expressed in B16F10 melanoma cells, but baicalein had no effect on 12-LOX expression. Decreases in 12-LOX protein expression and hydroxyl radical signals occurred in a 12-LOX small interfering RNA knockdown protein group compared with the baicalein control. In the MTT assay, we also found that baicalein caused a reduction in cellular viability, which was reversed by the addition of ROS scavengers. On the basis of these data, we conclude that ROS formation catalyzed by 12-LOX is one possible mechanism of growth inhibition by baicalein in B16F10 melanoma cells.  相似文献   
92.
Tsai JJ  Liu SH  Yin SC  Yang CN  Hsu HS  Chen WB  Liao EC  Lee WJ  Pan HC  Sheu ML 《PloS one》2011,6(9):e23249

Background

Allergic disease can be characterized as manifestations of an exaggerated inflammatory response to environmental allergens triggers. Mite allergen Der-p2 is one of the major allergens of the house dust mite, which contributes to TLR4 expression and function in B cells in allergic patients. However, the precise mechanisms of Der-p2 on B cells remain obscure.

Methodology/Principal Findings

We investigated the effects of Der-p2 on proinflammatory cytokines responses and Toll-like receptor-4 (TLR4)-related signaling in human B cells activation. We demonstrated that Der-p2 activates pro-inflammatory cytokines, TLR4 and its co-receptor MD2. ERK inhibitor PD98059 significantly enhanced TLR4/MD2 expression in Der-p2-treated B cells. Der-p2 markedly activated mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) and decreased p38 phosphorylation in B cells. MKP-1-siRNA downregulated TLR4/MD2 expression in Der-p2-treated B cells. In addition, Der-p2 significantly up-regulated expression of co-stimulatory molecules and increased B cell proliferation. Neutralizing Der-p2 antibody could effectively abrogate the Der-p2-induced B cell proliferation. Der-p2 could also markedly induce NF-κB activation in B cells, which could be counteracted by dexamethasone.

Conclusions/Significance

These results strongly suggest that Der-p2 is capable of triggering B cell activation and MKP-1-activated p38/MAPK dephosphorylation-regulated TLR4 induction, which subsequently enhances host immune, defense responses and development of effective allergic disease therapeutics in B cells.  相似文献   
93.
Avascular necrosis of the femoral head (ANFH) is a debilitating disease that commonly leads to destruction of the hip joint in adults. The etiology of ANFH is unknown, but previous studies have indicated that heritable thrombophilia (increased tendency to form thrombi) and hypofibrinolysis (reduced ability to lyse thrombi), alcohol intake, and steroid use are risk factors for ANFH. We recently identified two families with ANFH showing autosomal dominant inheritance. By applying linkage analysis to a four-generation pedigree, we excluded linkage between the family and three genes related to thrombophilia and hypofibrinolysis: protein C, protein S, and plasminogen activator inhibitor. Furthermore, by a genomewide scan, a significant two-point LOD score of 3.45 (recombination fraction [theta] = 0) was obtained between the family with ANFH and marker D12S85 on chromosome 12. High-resolution mapping was conducted in a second family with ANFH and replicated the linkage to D12S368 (pedigree I: LOD score 2.47, theta = 0.05; pedigree II: LOD score 2.81, theta = 0.10). When an age-dependent-penetrance model was applied, the combined multipoint LOD score was 6.43 between D12S1663 and D12S85. Thus, we mapped the candidate gene for autosomal dominant ANFH to a 15-cM region between D12S1663 and D12S1632 on chromosome 12q13.  相似文献   
94.
Betel nut chewing has been reported to increase the risk of cardiovascular disease and all‐cause mortality. The reason is unclear. In this study, we investigated the association between betel nut chewing and general obesity (BMI ≥25 kg/m2) and central obesity (waist circumference (WC) ≥90 cm). A total of 1,049 male subjects, aged ≥40 years, were recruited from Taichung city in Taiwan in 2004. The relationships between betel nut chewing and general and central obesity were studied by multiple linear and logistic regression analyses. The prevalence of current and former betel nut chewing was 7.0 and 10.5% in our male Taiwanese cohort. Current/former betel nut chewers had a higher prevalence of general and central obesity when compared with individuals who had never chewed betel nut. Adjusted for age, diabetes, hypertension, lipids, smoking, alcohol drinking, physical activity, income, and education level, the odds ratios (ORs; 95% confidence intervals) of general and central obesity among the lower consumption of betel nut chewers were 1.78 (1.07, 2.96) and 1.19 (0.70, 2.02), respectively, compared to 2.01 (1.18, 3.41) and 1.89 (1.10, 3.23), respectively, among higher consumption chewers compared to individuals who had never chewed betel nut. The increasing ORs of general and central obesity with higher betel nut consumption revealed dose–response effects. Using multiple linear regression analyses, after adjusting for potential confounders, betel nut consumption was statistically significantly associated with BMI and WC. In conclusion, betel nut chewing was independently associated with general and central obesity in Taiwanese men. Dose–response effects of the association between betel nut consumption and general obesity as well as central obesity were found.  相似文献   
95.
96.
Our laboratory has recently cloned and characterized two testes-expressed loci--the Tcp-10 gene family cluster and the D17Si11 gene--that map to the proximal portion of mouse chromosome 17. Human homologs of both loci have been identified and cloned. Somatic cell hybrid lines have been used to map the human homolog of D17Si11 to the short arm of chromosome 6 (p11-p21.1) along with homologs of other genes from the (Pim-1)-(Pgk-2) region of the mouse chromosome. The human TCP 10 locus maps to the long arm of chromosome 6 (q21-qter) along with homologs of other genes from the mouse chromosome 17 region between the centromere and Pim-1. The mapping of large portions of the mouse t haplotype to unlinked regions on human chromosome 6 rules out the possibility that a t-haplotype-like chromosome could exist in humans.  相似文献   
97.
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.The migration of newly born neurons is a precisely regulated process that is critical for the development of brain architecture. Neurons arise from the proliferative epithelium that covers the ventricular space throughout the neural tube, an area named the ventricular zone (VZ). From there, newly born neurons adopt two main strategies to disperse throughout the central nervous system (CNS), designated as radial and tangential migration (Hatten 1999; Marín and Rubenstein 2003). During radial migration, neurons follow a trajectory that is perpendicular to the ventricular surface, moving alongside radial glial fibers expanding the thickness of the neural tube. In contrast, tangentially migrating neurons move in trajectories that are parallel to the ventricular surface and orthogonal to the radial glia palisade (Fig. 1). Besides their relative orientation, some of the basic mechanisms underlying the movement of cells using each of these two modes of migration are also different. For example, radially migrating neurons often use radial glial fibers as substrate, whereas tangentially migrating neurons do not seem to require their support to migrate. Even so, neurons may alternate from radial to tangential movement and vice versa during the course of their migration. This suggests that both types of migrations share common principles, in particular those directly related to the cell biology of movement (Marín et al. 2006).Open in a separate windowFigure 1.Representative migrations in the developing CNS. Multiple migrations coexist during embryonic development at different areas of the central nervous system. This schema summarizes some of these migrations during the second week of the embryonic period in the mouse. Neurons use tangential and radial migration to reach their final destination; both strategies are used by the same neurons at different stages of development (i.e., cortical interneurons in the forebrain and precerebellar neurons in the hindbrain). (IML) intermediolateral region of the spinal cord; (IO) inferior olive nucleus; (LGE) lateral ganglionic eminence; (LRN) lateral reticular nucleus; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb.One of the structures that better illustrates how both types of migrations are integrated during brain development is the cerebral cortex, and so we will primarily refer to studies performed on cortical neurons for this review. The adult cerebral cortex contains two main classes of neurons: glutamatergic cortical projection neurons (also known as pyramidal cells) and GABAergic interneurons. Pyramidal cells are generated in the ventricular zone (VZ) of the embryonic pallium—the roof of the telencephalon—and reach their final position by radial migration (Rakic 2007). In contrast, cortical interneurons are born in the subpallium—the base of telencephalon—and reach the cerebral cortex through a long tangential migration (Corbin et al. 2001; Marín and Rubenstein 2001).The earliest cortical neurons form a transient structure known as the preplate, around embryonic day 10 (E10) of gestation age in the mouse. This primordial layer consists of Cajal-Retzius cells and the first cohort of pyramidal neurons, which will eventually populate the subplate. Cajal-Retzius cells, which play important roles during neuronal migration, arise from discrete pallial sources and colonize the entire surface of the cortex through tangential migration (Bielle et al. 2005; Takiguchi-Hayashi et al. 2004; Yoshida et al. 2006). The next cohort of pyramidal cells forms the cortical plate (CP) by intercalating in the preplate and splitting this primitive structure in a superficial layer, the marginal zone (MZ or layer I), and a deep layer, the subplate. The development of the neocortex progresses with new waves of neurons that occupy progressively more superficial positions within the CP (Gupta et al. 2002; Marín and Rubenstein 2003). Birth dating studies have shown that layers II–VI of the cerebral cortex are generated in an “inside-out” sequence. Neurons generated earlier reside in deeper layers, whereas later-born neurons migrate past existing layers to form superficial layers (Angevine and Sidman 1961; Rakic 1974). In parallel to this process, GABAergic interneurons migrate to the cortex, where they disperse tangentially via highly stereotyped routes in the MZ, SP, and lower intermediate zone/subventricular zone (IZ/SVZ) (Lavdas et al. 1999). Interneurons then switch from tangential to radial migration to adopt their final laminar position in the cerebral cortex (Ang et al. 2003; Polleux et al. 2002; Tanaka et al. 2003).  相似文献   
98.
The complex flower organization of orchids offers an opportunity to discover new variant genes and different levels of complexity in the morphogenesis of flowers. In this study, four B-class Phalaenopsis DEF-like MADS-box genes were identified and characterized, including PeMADS2, PeMADS3, PeMADS4 and PeMADS5. Differential expression profiles of these genes were detected in the floral organs of P. equestris, suggesting distinctive roles in the floral morphogenesis of orchids. Furthermore, expressions of these genes were varied to different extents in the peloric mutants with lip-like petals. Expression of PeMADS4 was in lips and columns of wild type, and it extended to the lip-like petals in the peloric mutant. Expression of PeMADS5 was mainly in petals and to a lesser extent in columns in the wild type, whereas it was completely eliminated in the peloric mutant. Disruption of the PeMADS5 promoter region of the peloric mutant was detected at nucleotide +312 relative to the upstream of translational start codon, suggesting that a DNA rearrangement has occurred in the peloric mutant. Genomic structure analysis of the PeMADS5 showed that the exon length was conserved in exons 1-6, similar to DEF-like genes of other plants. Collectively, this is the first report that four DEF-like MADS genes were identified in a single monocotyledonous species and that they may play distinctive morphogenetic roles in the floral development of an orchid.  相似文献   
99.

Background

Despite increased identification of spotted fever group rickettsioses (SFGR) in animals and arthropods, human SFGR are poorly characterized in Taiwan.

Methods

Patients with suspected Q fever, scrub typhus, murine typhus, leptospirosis, and dengue fever from April 2004 to December 2009 were retrospectively investigated for SFGR antibodies (Abs). Sera were screened for Rickettsia rickettsii Abs by indirect immunofluorescence antibody assay (IFA), and those with positive results were further examined for Abs against R. rickettsii, R. typhi, R. felis, R. conorii, and R. japonica using micro-immunofluorescence (MIF) tests. Polymerase chain reaction (PCR) for detection of SFGR DNA was applied in those indicated acute infections. Case geographic distribution was made by the geographic information system software.

Results

A total of 413 cases with paired serum, including 90 cases of Q fever, 47 cases of scrub typhus, 12 cases of murine typhus, 6 cases of leptospirosis, 3 cases of dengue fever, and 255 cases of unknown febrile diseases were investigated. Using IFA tests, a total of 49 cases with 47 (11.4%) and 4 (1.0%) cases had sera potentially positive for R. rickettsii IgG and IgM, respectively. In the 49 cases screened from IFA, MIF tests revealed that there were 5 cases of acute infections (3 possible R. felis and 2 undetermined SFGR) and 13 cases of past infections (3 possible R. felis and 10 undetermined SFGR). None of the 5 cases of acute infection had detectable SFGR DNA in the blood specimen by PCR. Possible acute infection of R. felis was identified in both one case of Q fever and scrub typhus. The geographic distribution of SFGR cases is similar with that of scrub typhus.

Conclusions

Human SFGR exist and are neglected diseases in southern Taiwan, particularly for the species closely-related to R. felis.  相似文献   
100.
Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a ‘persistent vegetative state’ where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD) causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by ‘higher’ hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT) imaging in response to 10 minutes of oxygen/glucose deprivation (OGD) revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1–10 nM palytoxin which converts the pump into an open cationic channel.Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival of lower brain regions that maintain vital functions will support the persistent vegetative state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号