首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13467篇
  免费   1035篇
  国内免费   836篇
  15338篇
  2024年   30篇
  2023年   137篇
  2022年   331篇
  2021年   600篇
  2020年   369篇
  2019年   484篇
  2018年   427篇
  2017年   332篇
  2016年   492篇
  2015年   823篇
  2014年   880篇
  2013年   1052篇
  2012年   1224篇
  2011年   1046篇
  2010年   636篇
  2009年   569篇
  2008年   775篇
  2007年   606篇
  2006年   615篇
  2005年   489篇
  2004年   413篇
  2003年   348篇
  2002年   291篇
  2001年   269篇
  2000年   222篇
  1999年   215篇
  1998年   155篇
  1997年   126篇
  1996年   135篇
  1995年   130篇
  1994年   115篇
  1993年   94篇
  1992年   134篇
  1991年   117篇
  1990年   81篇
  1989年   102篇
  1988年   60篇
  1987年   48篇
  1986年   58篇
  1985年   64篇
  1984年   18篇
  1983年   24篇
  1982年   28篇
  1981年   12篇
  1980年   25篇
  1979年   20篇
  1978年   16篇
  1977年   19篇
  1974年   9篇
  1972年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
A brachiopod fauna including 19 species of 17 genera from an exotic block in the Indus–Tsangpo suture zone in southern Tibet is described and illustrated. The brachiopod fauna is dominated by Martinia elegans and two new taxa: Jinomarginifera lhazeensis gen. et sp. nov. and Zhejiangospirifer giganteus sp. nov. The fauna is closely comparable with those from the middle and upper parts of the Wargal Formation and the Chhidru Formation in the Salt Range of Pakistan, the Chitichun Limestone in southern Tibet, and the Basleo area of West Timor, and these correlations suggest a Wuchiapingian age. The fauna exhibits substantial links with both peri–Gondwanan and Cathaysian faunas, which may imply that it is a seamount biota originally located in the southern margin of the Neotethys during the Late Permian, and was later (in the early Cenozoic) displaced and became sandwiched into younger marine deposits in the collision process between India and Eurasia.  相似文献   
12.
13.
The hydrolytic deamination of 5-methylcytosine (5-mC) to thymine (T) is believed to be responsible for the high mutability of the CpG dinucleotide in DNA. We have shown a possible alternate mechanism for mutagenesis at CpG in which HpaII DNA-(cytosine-5) methyltransferase (M.HpaII) can enzymatically deaminate cytosine (C) to uracil (U) in DNA [Shen, J.-C., Rideout, W.M., III and Jones, P.A., Cell, 71, 1073-1080, (1992)]. Both the hydrolytic deamination of 5-mC and enzymatic deamination of C create premutagenic DNA mismatches (G:U and G:T) with the guanine (G) originally paired to the normal C. Surprisingly, we found that DNA-(cytosine-5) methyltransferases have higher affinities for these DNA mismatches than for their normal G:C targets and are capable of transferring a methyl group to the 5-position of U, creating T at low efficiencies. This binding by methyltransferase to mismatches at the recognition site prevented repair of G:U mismatches by uracil DNA glycosylase in vitro.  相似文献   
14.
15.
Schistosomiasis is a serious and widespread parasitic disease caused by infection with Schistosoma. Because the parasite’s eggs are primarily responsible for schistosomiasis dissemination and pathogenesis, inhibiting egg production is a potential approach to control the spread and severity of the disease. The bromodomain and extra-terminal (BET) proteins represent promising targets for the development of epigenetic drugs against Schistosoma. JQ-1 is a selective inhibitor of the BET protein family. In the present study, JQ-1 was applied to S. japonicum in vitro. By using laser confocal scanning microscopy and EdU incorporation assays, we showed that application of JQ-1 to worms in vitro affected egg laying and the development of both the male and female reproductive systems. JQ-1 also inhibited the expression of the reproductive-related genes SjPlk1 and SjNanos1 in S. japonicum. Mice infected with S. japonicum were treated with JQ-1 during egg granuloma formation. JQ-1 treatment significantly reduced the size of the liver granulomas and levels of serum alanine aminotransferase and aspartate aminotransferase in mice and suppressed both egg laying and the development of male and female S. japonicum reproductive systems in vivo. Moreover, the mRNA expression levels of some proinflammatory cytokines were decreased in the parasites. Our findings suggest that JQ-1 treatment attenuates S. japonicum egg–induced hepatic granuloma due at least in part to suppressing the development of the reproductive system and egg production of S. japonicum. These findings further suggest that JQ-1 or other BET inhibitors warrant additional study as a new approach for the treatment or prevention of schistosomiasis.  相似文献   
16.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
17.
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.  相似文献   
18.
Acute lung injury (ALI) is a potentially life-threatening, devastating disease with an extremely high rate of mortality. The underlying mechanism of ALI is currently unclear. In this study, we aimed to confirm the hub genes associated with ALI and explore their functions and molecular mechanisms using bioinformatics methods. Five microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs) and the key genes were identified via the protein-protein interaction (PPI) network. Lipopolysaccharide intraperitoneal injection was administered to establish an ALI model. Overall, 40 robust DEGs, which are mainly involved in the inflammatory response, protein catabolic process, and NF-κB signaling pathway were identified. Among these DEGs, we identified two genes associated with ALI, of which the CAV-1/NF-κB axis was significantly upregulated in ALI, and was identified as one of the most effective targets for ALI prevention. Subsequently, the expression of CAV-1 was knocked down using AAV-shCAV-1 or CAV-1-siRNA to study its effect on the pathogenesis of ALI in vivo and in vitro. The results of this study indicated that CAV-1/NF-κB axis levels were elevated in vivo and in vitro, accompanied by an increase in lung inflammation and autophagy. The knockdown of CAV-1 may improve ALI. Mechanistically, inflammation was reduced mainly by decreasing the expression levels of CD3 and F4/80, and activating autophagy by inhibiting AKT/mTOR and promoting the AMPK signaling pathway. Taken together, this study provides crucial evidence that CAV-1 knockdown inhibits the occurrence of ALI, suggesting that the CAV-1/NF-κB axis may be a promising therapeutic target for ALI treatment.Subject terms: Cell signalling, Respiratory tract diseases  相似文献   
19.
Filamin-A cross-links actin filaments into dynamic orthogonal networks, and interacts with an array of proteins of diverse cellular functions. Because several filamin-A interaction partners are implicated in signaling of cell mobility regulation, we tested the hypothesis that filamin-A plays a role in cancer metastasis. Using four pairs of filamin-A proficient and deficient isogenic cell lines, we found that filamin-A deficiency in cancer cells significantly reduces their migration and invasion. Using a xenograft tumor model with subcutaneous and intracardiac injections of tumor cells, we found that the filamin-A deficiency causes significant reduction of lung, splenic and systemic metastasis in nude mice. We evaluated the expression of filamin-A in breast cancer tissues by immunohistochemical staining, and found that low levels of filamin-A expression in cancer cells of the tumor tissues are associated with a better distant metastasis-free survival than those with normal levels of filamin-A. These data not only validate filamin-A as a prognostic marker for cancer metastasis, but also suggest that inhibition of filamin-A in cancer cells may reduce metastasis and that filamin-A can be used as a therapeutic target for filamin-A positive cancer.  相似文献   
20.
Riboprinting was used to determine the relationships among strains belonging to 15 species of the genusKluyveromyces. The small subunit ribosomal RNA gene (SSU rDNA) was amplified using the Polymerase Chain Reaction (PCR) and subjected to a battery of nine restriction enzymes. Similarity coefficients between strains were calculated based on shared and unique restriction fragments. Cluster analysis revealed three major groups that generally correlated with previously reported relationships based on other molecular data. Variations in SSU rDNA restriction fragments may be used for differentiation of theKluyveromyces strains included in this study.The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号