首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   140篇
  国内免费   1篇
  509篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   20篇
  2019年   43篇
  2018年   41篇
  2017年   31篇
  2016年   23篇
  2015年   42篇
  2014年   34篇
  2013年   39篇
  2012年   18篇
  2011年   23篇
  2010年   44篇
  2009年   42篇
  2008年   12篇
  2007年   8篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有509条查询结果,搜索用时 0 毫秒
71.
72.
Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.  相似文献   
73.
Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end‐stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD‐ALB) or healthy volunteers (N‐ALB). From high‐performance liquid chromatography spectra, we observed that one uremic solute binds to HD‐ALB via the formation of disulfide bonds between HD‐ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N‐ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD‐ALB. Our results suggest that protein‐bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD‐ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
74.
Ku is a heterodimeric protein involved in nonhomologous end-joining of the DNA double-stranded break repair pathway. It binds to the double-stranded DNA ends and then activates a series of repair enzymes that join the broken DNA. In addition to its function in DNA repair, the yeast Saccharomyces cerevisiae Ku (Yku) is also a component of telomere protein-DNA complexes that affect telomere function. The yeast telomeres are composed of duplex C1–3(A/T)G1–3 telomeric DNA repeats plus single-stranded TG1–3 telomeric DNA tails. Here we show that Yku is capable of binding to a tailed-duplex DNA formed by telomeric DNA that mimics the structure of telomeres. Addition of Cdc13p, a single-stranded telomeric DNA-binding protein, to the Yku-DNA complex enables the formation of a ternary complex with Cdc13p binding to the single-stranded tail of the DNA substrate. Because pre-loading of Cdc13p to the single-stranded telomeric tail inhibits the binding of Yku, the results suggested that loading of Yku and Cdc13p to telomeres is sequential. Through generating a double-stranded break near telomeric DNA sequences, we found that Ku protein appears to bind to the de novo synthesized telomeres earlier than that of Cdc13p in vivo. Thus, our results indicated that Yku interacts directly with telomeres and that sequential loading of Yku followed by Cdc13p to telomeres is required for both proteins to form a ternary complex on telomeres. Our results also offer a mechanism that the binding of Cdc13p to telomeres might prevent Yku from initiating DNA double-stranded break repair pathway on telomeres.DNA damages in the form of double-stranded breaks (DSBs)4 compromise the integrity of genomes. Failure in repairing or mis-repairing double-stranded breaks can lead to chromosome instability and eventually cell death or cancer (1). Double-stranded breaks are repaired by two main pathways, the homologous recombination and nonhomologous DNA end-joining. In nonhomologous DNA end-joining, Ku is the first protein to bind to the DNA ends to initiate the repair pathway (2). Upon binding, Ku then recruits a series of repair enzymes to join the broken ends (2). Ku is a heterodimeric protein composed of 70- and ∼80-kDa subunits. In Saccharomyces cerevisiae, Ku includes Yku70 and Yku80 subunits. Because the biochemical configuration of the broken ends could be very diverse on DSBs, Ku binds to double-stranded ends in a sequence- and energy-independent manner. It is capable of binding to DNA ends with blunt 3′-overhangs or 5′-overhangs as well as double-stranded DNA with nicks, gaps, or internal loops (37). However, Ku does not have high affinity to single-stranded DNA. The crystal structure of human Ku heterodimer indicates that it forms a ring structure that encircles duplex DNA (7). This unique structure feature enables Ku to recognize DNA ends and achieves its high affinity binding.In additional to the role in double-stranded break repair, Ku was shown to be a component of telomeric protein-DNA complex in yeast and mammals (810). Telomeres are terminal structures of chromosomes composed of short tandem repeated sequences (11, 12). Mutation of YKU70 or YKU80 causes defects in telomere structure (1315), telomere silencing (1619), and replication timing of telomeres (20). The function of yeast Ku (Yku) on telomeres could mediate through protein-protein interaction with Sir4p or protein-RNA interaction with Tlc1 RNA (21, 22). For example, through the interaction with Sir4p, Yku selectively affects telomeres silencing but not the silent mating type loci (17). Yku could also bind to telomerase Tlc1 RNA for telomere length maintenance (22). Judged by the DNA binding activity of Yku, it is reasonable to suggest that it may bind directly to telomeric DNA. Indeed, it was shown that human Ku is capable of binding directly to telomeric DNA in vitro (15). Moreover, because the deletion of SIR4 in budding yeast (23) or Taz1 in fission yeast (24) does not abolish the association of Ku with chromosomal ends, this suggests that Ku might bind directly to telomeric DNA in cells. However, because yeast telomeres have a short 12–14-mer single-stranded tail (25), it is uncertain whether Yku could pass the single-stranded region to reach its binding site. The direct binding of Yku to telomeric DNA has not been experimentally determined.In contrast to double-stranded breaks, the ends of linear chromosomes are not recognized by repair enzymes as DNA damage. In S. cerevisiae, Cdc13p is the single-stranded TG1–3 DNA-binding protein that enables cells to differentiate whether the ends of a linear DNA are telomeres or broken ends (2629). Thus, although the mechanism of how cells prevent the activation of DSB repair pathway in telomere is unclear, it is likely that binding of Cdc13p to telomeres might inhibit the initiation of DNA damage response by the Ku protein. Here, using a tailed-duplex DNA synthesized by telomeric DNA sequences to mimic telomere structure, we showed that Yku binds directly to this tailed-duplex DNA substrate and forms a ternary complex with Cdc13p. Our results also showed that Yku loaded to a de novo synthesized telomere earlier than Cdc13p in vivo. These results support the direct binding of Yku to telomeric DNA and that the spatial orientation of Cdc13p might block the activation of DSB repair pathway on telomeres.  相似文献   
75.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.  相似文献   
76.
ZAK (sterile alpha motif and leucine zipper containing kinase AZK), a serine/threonine kinase with multiple biochemical functions, has been associated with various cell processes, including cell proliferation, cell differentiation, and cardiac hypertrophy. In our previous reports, we found that the activation of ZAKα signaling was critical for cardiac hypertrophy. In this study, we show that the expression of ZAKα activated apoptosis through both a FAS‐dependent pathway and a mitochondria‐dependent pathway by subsequently inducing caspase‐3. ZAKβ, an isoform of ZAKα, is dramatically expressed during cardiac hypertrophy and apoptosis. The interaction between ZAKα and ZAKβ was demonstrated here using immunoprecipitation. The results show that ZAKβ has the ability to diminish the expression level of ZAKα. These findings reveal an inherent regulatory role of ZAKβ to antagonize ZAKα and to subsequently downregulate the cardiac hypertrophy and apoptosis induced by ZAKα.  相似文献   
77.
78.
Betel nut chewing has been reported to increase the risk of cardiovascular disease and all‐cause mortality. The reason is unclear. In this study, we investigated the association between betel nut chewing and general obesity (BMI ≥25 kg/m2) and central obesity (waist circumference (WC) ≥90 cm). A total of 1,049 male subjects, aged ≥40 years, were recruited from Taichung city in Taiwan in 2004. The relationships between betel nut chewing and general and central obesity were studied by multiple linear and logistic regression analyses. The prevalence of current and former betel nut chewing was 7.0 and 10.5% in our male Taiwanese cohort. Current/former betel nut chewers had a higher prevalence of general and central obesity when compared with individuals who had never chewed betel nut. Adjusted for age, diabetes, hypertension, lipids, smoking, alcohol drinking, physical activity, income, and education level, the odds ratios (ORs; 95% confidence intervals) of general and central obesity among the lower consumption of betel nut chewers were 1.78 (1.07, 2.96) and 1.19 (0.70, 2.02), respectively, compared to 2.01 (1.18, 3.41) and 1.89 (1.10, 3.23), respectively, among higher consumption chewers compared to individuals who had never chewed betel nut. The increasing ORs of general and central obesity with higher betel nut consumption revealed dose–response effects. Using multiple linear regression analyses, after adjusting for potential confounders, betel nut consumption was statistically significantly associated with BMI and WC. In conclusion, betel nut chewing was independently associated with general and central obesity in Taiwanese men. Dose–response effects of the association between betel nut consumption and general obesity as well as central obesity were found.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号