首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2298篇
  免费   188篇
  国内免费   1篇
  2023年   8篇
  2022年   25篇
  2021年   33篇
  2020年   19篇
  2019年   29篇
  2018年   28篇
  2017年   21篇
  2016年   53篇
  2015年   125篇
  2014年   150篇
  2013年   177篇
  2012年   192篇
  2011年   189篇
  2010年   108篇
  2009年   105篇
  2008年   127篇
  2007年   119篇
  2006年   110篇
  2005年   105篇
  2004年   99篇
  2003年   71篇
  2002年   70篇
  2001年   66篇
  2000年   56篇
  1999年   46篇
  1998年   28篇
  1997年   16篇
  1996年   12篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   26篇
  1991年   40篇
  1990年   24篇
  1989年   17篇
  1988年   19篇
  1987年   14篇
  1986年   13篇
  1985年   13篇
  1983年   6篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   11篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1971年   4篇
  1969年   5篇
排序方式: 共有2487条查询结果,搜索用时 593 毫秒
261.
Recent studies have demonstrated that both mouse and human alpha beta TCR(+)CD3(+)NK1.1(-)CD4(-)CD8- double-negative regulatory T (DN Treg) cells can suppress Ag-specific immune responses mediated by CD8+ and CD4+ T cells. To identify molecules involved in DN Treg cell function, we generated a panel of murine DN Treg clones, which specifically kill activated syngeneic CD8+ T cells. Through serial cultivation of DN Treg clones, mutant clones arose that lost regulatory capacity in vitro and in vivo. Although all allogeneic cardiac grafts in animals preinfused with tolerant CD4/CD8 negative 12 DN Treg clones survived over 100 days, allograft survival is unchanged following infusion of mutant clones (19.5 +/- 11.1 days) compared with untreated controls (22.8 +/- 10.5 days; p < 0.001). Global gene expression differences between functional DN Treg cells and nonfunctional mutants were compared. We found 1099 differentially expressed genes (q < 0.025%), suggesting increased cell proliferation and survival, immune regulation, and chemotaxis, together with decreased expression of genes for Ag presentation, apoptosis, and protein phosphatases involved in signal transduction. Expression of 33 overexpressed and 24 underexpressed genes were confirmed using quantitative real-time PCR. Protein expression of several genes, including Fc epsilon RI gamma subunit and CXCR5, which are >50-fold higher, was also confirmed using FACS. These findings shed light on the mechanisms by which DN Treg cells down-regulate immune responses and prolong cardiac allograft survival.  相似文献   
262.
Buryanovskyy L  Fu Y  Boyd M  Ma Y  Hsieh TC  Wu JM  Zhang Z 《Biochemistry》2004,43(36):11417-11426
Resveratrol has been shown to have chemopreventive, cardioprotective, and antiaging properties. Here, we report that resveratrol is a potent inhibitor of quinone reductase 2 (QR2) activity in vitro with a dissociation constant of 35 nM and show that it specifically binds to the deep active-site cleft of QR2 using high-resolution structural analysis. All three resveratrol hydroxyl groups form hydrogen bonds with amino acids from QR2, anchoring a flat resveratrol molecule in parallel with the isoalloxazine ring of FAD. The unique active-site pocket in QR2 could potentially bind other natural polyphenols such as flavonoids, as proven by the high affinity exhibited by quercetin toward QR2. K562 cells with QR2 expression suppressed by RNAi showed similar properties as resveratrol-treated cells in their resistance to quinone toxicity. Furthermore, the QR2 knockdown K562 cells exhibit increased antioxidant and detoxification enzyme expression and reduced proliferation rates. These observations could imply that the chemopreventive and cardioprotective properties of resveratrol are possibly the results of QR2 activity inhibition, which in turn, up-regulates the expression of cellular antioxidant enzymes and cellular resistance to oxidative stress.  相似文献   
263.
Lin SY  Wei YS  Hsieh TF  Li MJ 《Biopolymers》2004,75(5):393-402
We used Fourier transform infrared (FTIR) microspectroscopy to investigate pressure-induced conformational changes in secondary structure of fibrinogen (FBG). Solid state FBG was compressed on a KBr pellet (1KBr method) or between two KBr pellets (2KBr method). The peak positions of the original and second-derivative ir spectra of compressed FBG samples prepared by the 1KBr method were similar to FBG sample without pressure. When FBG was prepared by the 2KBr method and pressure was increased up to 400 kg/cm(2), peaks at 1625 (intermolecular beta-sheet) and 1611 (beta-sheet aggregates structure and/or the side-chain absorption of the tyrosine residues) cm(-1) were enhanced. The peaks near 1661 (beta-sheet) and 1652 (alpha-helix) cm(-1) also exhibited a marked change with pressure. A linear correlation was found between the peak intensity ratio of 1611/1652 cm(-1) (r = 0.9879) or 1625/1652 cm(-1) (r = 0.9752) and applied pressure. The curve-fitted compositional changes in secondary structure of FBG also indicate that the composition of the alpha-helix structure (1657-1659 cm(-1)) was gradually reduced with the increase in compression pressure, but the composition of the beta-sheet structure (1681, 1629, and 1609 cm(-1)) gradually increased. This indicates that pressure-induced conformational changes in FBG include not only transformations from alpha-helix to beta-sheet structure, but also unfolding and denaturation of FBG and the formation of aggregates.  相似文献   
264.
265.
Protein kinase D (PKD) potentiates cellular DNA synthesis in response to G protein-coupled receptor (GPCR) agonists but the mechanism(s) involved has not been elucidated. Here, we examined whether PKD overexpression in Swiss 3T3 cells regulates the activation/inactivation kinetics of the extracellular-regulated protein kinase (ERK) in response to the mitogenic GPCR agonists bombesin and vasopressin. Addition of bombesin or vasopressin to Swiss 3T3 cells overexpressing PKD induced a striking increase in the duration of MEK/ERK/RSK activation as compared with cultures of either control Swiss 3T3 cells or Swiss 3T3 cells expressing a kinase-inactive PKD mutant. In contrast, the duration of ERK activation in response to epidermal growth factor, which acts via protein kinase C/PKD-independent pathways, was not increased. Furthermore, bombesin or vasopressin promoted a striking increase in phosphorylation (at Ser-374) and accumulation of c-Fos (the c-fos proto-oncogene product) in Swiss 3T3 cells overexpressing wild-type (but not kinase-inactive) PKD. Inhibition of the sustained phase of ERK/RSK activation abrogated the increase in c-Fos accumulation and DNA synthesis induced by bombesin or vasopressin in PKD-overexpressing cells. Our results demonstrate that PKD selectively potentiates mitogenesis induced by bombesin or vasopressin in Swiss 3T3 cells by increasing the duration of MEK/ERK/RSK signaling.  相似文献   
266.
The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [gamma-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes.  相似文献   
267.
268.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. An unstable CAG trinucleotide repeat expansion in MJD gene on long arm of chromosome 14 has been identified as the pathologic mutation of MJD and apoptosis was previously shown to be responsible for the neuronal cell death of the disease. In this study, we utilized human neuronal SK-N-SH cells stably transfected with HA-tagged full-length MJD with 78 polyglutamine repeats to examine the effects of polyglutamine expansion on neuronal cell survival in the early stage of disease. Various pro-apoptotic agents were used to assess the tolerance of the mutant cells and to compare the differences between cells with and without mutant ataxin-3. Concentration- and time-dependent experiments showed that the increase in staurosporine-induced cell death was more pronounced and accelerated in cells containing expanded ataxin-3 via MTS assays. Interestingly, under basal conditions, Western blot and immunocytochemical analyses showed a significant decrease of Bcl-2 protein expression and an increase of cytochrome c in cells containing expanded ataxin-3 when compared with those of the parental cells. The same reduction of Bcl-2 was further confirmed in fibroblast cells with mutant ataxin-3. In addition, exogenous expression of Bcl-2 desensitized SK-N-SH-MJD78 cells to poly-Q toxicity. These results indicated that mitochondrial-mediated cell death plays a role in the pathogenesis of MJD. In our cellular model, full-length expanded ataxin-3 that leads to neurodegenerative disorders significantly impaired the expression of Bcl-2 protein, which may be, at least in part, responsible for the weak tolerance to polyglutamine toxicity at the early stage of disease and ultimately resulted in an increase of stress-induced cell death upon apoptotic stress.  相似文献   
269.
Circadian rhythms exist for hematopoiesis, but little is known about circadian variation of bone marrow engraftability and host "acceptability". Using a B6.SJL to C57BL/6J congenic transplant model, we chose 3-times with light on: Hours After Light Onset (HALO) 4, 8, and 12 and 3-times with light off: HALO 16, 20, and 24. The mice were conditioned on a 12-h light/dark cycles. Recipient mice (100 cGy) received 40 million cells. We demonstrated a significant variation of bone marrow engraftability into bone marrow, spleen, and thymus when donor animals were subjected to changes in their light/dark cycles. Two statistically significant nadirs in all three organs were observed at HALO 8 and 24 in experiments carried out in July, while an identical set of experiments in February analyzing engraftment in marrow and spleen showed nadirs at HALO 8, but not at HALO 24. Marrow progenitors from the July experiments showed nadirs at HALO 12 and 24. The percentage of progenitors in S phase peaked at HALO 8 and 24. Interestingly, there were no changes in the ability of host to accept grafts with changes in the light/dark cycles of host animals. Circadian variations of bone marrow engraftability are important and should be considered in bone marrow transplant strategies.  相似文献   
270.
Protelomerases are enzymes responsible for the generation of closed hairpin ends in linear DNA. It is proposed that they use a breaking-and-rejoin type mechanism to affect DNA rearrangement on specific DNA sequences. In doing so, one strand turns around and becomes the complementary strand. Using the purified enzyme from the Escherichia coli phage N15 and the Klebsiella phage phiKO2 and synthetic oligonucleotide substrates, we directly demonstrate the location where the cutting/re-ligation occurs. We identified a pair of transient staggered cleavages six base-pairs apart centered around the axis of dyad symmetry of the target site. Two molecules of the protelomerase form a pair of protein-linked DNA intermediates at each 3' end of the cleaved openings leaving a 5'-OH. Then, in a process not yet clearly defined, the partners of the two initial openings are exchanged, and the transient breaks are resealed to generate hairpin ends. The formation of 3'-covalent DNA-protein intermediates is a hallmark of the topoisomerase IB type reaction, and we have thus shown experimentally that protelomerase is a member of the tyrosine-recombinase superfamily. In addition, by introducing single nicks in the substrates as perturbation, we found that the integrity of the nucleotide chain 4 bp away from the cutting site as well as this nucleotide's complementary location on the stem if the strands were to fold into a cruciform structure are required for activity, suggesting that these locations may be important substrate-protein contacts. We determined that N15 and phiKO2 protelomerases are monomers in solution and two molecules are needed to interact with the substrate to form two closed hairpin products. The target sites of protelomerases invariably consist of inverted repeats. Comparative studies using the related target sites of different protelomerases suggest that these proteins may require both sequence-specific and structure (possibly cruciform)-specific recognition for activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号