首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39342篇
  免费   3521篇
  国内免费   3775篇
  46638篇
  2024年   122篇
  2023年   543篇
  2022年   1283篇
  2021年   2055篇
  2020年   1452篇
  2019年   1776篇
  2018年   1641篇
  2017年   1259篇
  2016年   1726篇
  2015年   2439篇
  2014年   2862篇
  2013年   3083篇
  2012年   3648篇
  2011年   3225篇
  2010年   2017篇
  2009年   1775篇
  2008年   2079篇
  2007年   1832篇
  2006年   1632篇
  2005年   1431篇
  2004年   1248篇
  2003年   1210篇
  2002年   1048篇
  2001年   775篇
  2000年   658篇
  1999年   590篇
  1998年   375篇
  1997年   372篇
  1996年   350篇
  1995年   303篇
  1994年   316篇
  1993年   187篇
  1992年   256篇
  1991年   184篇
  1990年   170篇
  1989年   141篇
  1988年   103篇
  1987年   115篇
  1986年   74篇
  1985年   88篇
  1984年   56篇
  1983年   45篇
  1982年   44篇
  1981年   22篇
  1980年   8篇
  1979年   10篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
33.
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.  相似文献   
34.
Acute lung injury (ALI) is a potentially life-threatening, devastating disease with an extremely high rate of mortality. The underlying mechanism of ALI is currently unclear. In this study, we aimed to confirm the hub genes associated with ALI and explore their functions and molecular mechanisms using bioinformatics methods. Five microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs) and the key genes were identified via the protein-protein interaction (PPI) network. Lipopolysaccharide intraperitoneal injection was administered to establish an ALI model. Overall, 40 robust DEGs, which are mainly involved in the inflammatory response, protein catabolic process, and NF-κB signaling pathway were identified. Among these DEGs, we identified two genes associated with ALI, of which the CAV-1/NF-κB axis was significantly upregulated in ALI, and was identified as one of the most effective targets for ALI prevention. Subsequently, the expression of CAV-1 was knocked down using AAV-shCAV-1 or CAV-1-siRNA to study its effect on the pathogenesis of ALI in vivo and in vitro. The results of this study indicated that CAV-1/NF-κB axis levels were elevated in vivo and in vitro, accompanied by an increase in lung inflammation and autophagy. The knockdown of CAV-1 may improve ALI. Mechanistically, inflammation was reduced mainly by decreasing the expression levels of CD3 and F4/80, and activating autophagy by inhibiting AKT/mTOR and promoting the AMPK signaling pathway. Taken together, this study provides crucial evidence that CAV-1 knockdown inhibits the occurrence of ALI, suggesting that the CAV-1/NF-κB axis may be a promising therapeutic target for ALI treatment.Subject terms: Cell signalling, Respiratory tract diseases  相似文献   
35.
36.
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.  相似文献   
37.
38.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   
39.
Breast milk is a complex liquid rich in immunological components that affect the development of the infant's immune system. Exosomes are membranous vesicles of endocytic origin that are found in various body fluids and that can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, are packaged inside exosomes in human breast milk. Here, we identified 602 unique miRNAs originating from 452 miRNA precursors (pre-miRNAs) in human breast milk exosomes using deep sequencing technology. We found that, out of 87 well-characterized immune-related pre-miRNAs, 59 (67.82%) are presented and enriched in breast milk exosomes (P < 10(-16), χ(2) test). In addition, compared with exogenous synthetic miRNAs, these endogenous immune-related miRNAs are more resistant to relatively harsh conditions. It is, therefore, tempting to speculate that these exosomal miRNAs are transferred from the mother's milk to the infant via the digestive tract, and that they play a critical role in the development of the infant immune system.  相似文献   
40.
Biofabrication with chitosan   总被引:14,自引:0,他引:14  
The traditional motivation for integrating biological components into microfabricated devices has been to create biosensors that meld the molecular recognition capabilities of biology with the signal processing capabilities of electronic devices. However, a different motivation is emerging; biological components are being explored to radically change how fabrication is achieved at the micro- and nanoscales. Here we review biofabrication, the use of biological materials for fabrication, and focus on three specific biofabrication approaches: directed assembly, where localized external stimuli are employed to guide assembly; enzymatic assembly, where selective biocatalysts are enlisted to build macromolecular structure; and self-assembly, where information internal to the biological material guides its own assembly. Also reviewed are recent results with the aminopolysaccharide chitosan, a material that offers a combination of properties uniquely suited for biofabrication. In particular, chitosan can be directed to assemble in response to locally applied electrical signals, and the chitosan backbone provides sites that can be employed for the assembly of proteins, nucleic acids, and virus particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号