首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15971篇
  免费   1642篇
  国内免费   2016篇
  19629篇
  2024年   69篇
  2023年   270篇
  2022年   543篇
  2021年   862篇
  2020年   626篇
  2019年   798篇
  2018年   662篇
  2017年   541篇
  2016年   709篇
  2015年   1047篇
  2014年   1225篇
  2013年   1270篇
  2012年   1501篇
  2011年   1378篇
  2010年   890篇
  2009年   801篇
  2008年   916篇
  2007年   810篇
  2006年   743篇
  2005年   657篇
  2004年   589篇
  2003年   599篇
  2002年   516篇
  2001年   298篇
  2000年   247篇
  1999年   191篇
  1998年   124篇
  1997年   108篇
  1996年   94篇
  1995年   64篇
  1994年   97篇
  1993年   53篇
  1992年   53篇
  1991年   39篇
  1990年   40篇
  1989年   33篇
  1988年   31篇
  1987年   22篇
  1986年   18篇
  1985年   32篇
  1984年   13篇
  1983年   15篇
  1982年   15篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1973年   2篇
  1971年   2篇
  1961年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   
42.
M Kim  H Yi  YJ Cho  J Jang  HG Hur  J Chun 《Journal of bacteriology》2012,194(18):5149-5150
An enteric bacterium, Escherichia coli W26 (KACC 16630), was isolated from feces from a healthy cow in South Korea. Here, we report the draft genome sequence of the isolate, which is closely affiliated with commensal strains belonging to E. coli phylogroup B1.  相似文献   
43.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   
44.
45.
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants.  相似文献   
46.
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/?) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/? mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/? mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/? mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/? mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.  相似文献   
47.
48.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   

49.
A new coding sequence of the procarboxypeptidase B gene was obtained from SD rat fresh pancreas by RT-PCR and highly expressed in Escherichia coli in inclusion bodies. The folded procarboxypeptidase B was subjected to trypsin enzymatic cleavage to produce active carboxypeptidase B, subsequently, carboxypeptidase B was effectively purified with anion exchange chromatography DEAE-FF and hydrophobic interaction chromatography Octyl FF, as a result, 40 mg carboxypeptidase B per litre cell culture with specific activity 7.42 u/mg was achieved. Further research showed that the obtained recombinant carboxypeptidase B could substitute carboxypeptidase B isolated from pancreas.  相似文献   
50.
Chronic hepatitis B virus (HBV) infection is characterized by sustained liver inflammation with an influx of lymphocytes, which contributes to the development of cirrhosis and hepatocellular carcinoma. The mechanisms underlying this immune-mediated hepatic pathogenesis remain ill defined. We report in this article that repetitive infusion of anti-CD137 agonist mAb in HBV-transgenic mice closely mimics this process by sequentially inducing hepatitis, fibrosis, cirrhosis, and, ultimately, liver cancer. CD137 mAb initially triggers hepatic inflammatory infiltration due to activation of nonspecific CD8(+) T cells with memory phenotype. CD8(+) T cell-derived IFN-γ plays a central role in the progression of chronic liver diseases by actively recruiting hepatic macrophages to produce fibrosis-promoting cytokines and chemokines, including TNF-α, IL-6, and MCP-1. Importantly, the natural ligand of CD137 was upregulated significantly in circulating CD14(+) monocytes in patients with chronic hepatitis B infection and closely correlated with development of liver cirrhosis. Thus, sustained CD137 stimulation may be a contributing factor for liver immunopathology in chronic HBV infection. Our studies reveal a common molecular pathway that is used to defend against viral infection but also causes chronic hepatic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号