全文获取类型
收费全文 | 16053篇 |
免费 | 1639篇 |
国内免费 | 2017篇 |
专业分类
19709篇 |
出版年
2024年 | 69篇 |
2023年 | 271篇 |
2022年 | 547篇 |
2021年 | 865篇 |
2020年 | 626篇 |
2019年 | 798篇 |
2018年 | 663篇 |
2017年 | 543篇 |
2016年 | 717篇 |
2015年 | 1048篇 |
2014年 | 1231篇 |
2013年 | 1276篇 |
2012年 | 1518篇 |
2011年 | 1390篇 |
2010年 | 892篇 |
2009年 | 803篇 |
2008年 | 926篇 |
2007年 | 813篇 |
2006年 | 748篇 |
2005年 | 659篇 |
2004年 | 590篇 |
2003年 | 602篇 |
2002年 | 515篇 |
2001年 | 298篇 |
2000年 | 247篇 |
1999年 | 191篇 |
1998年 | 123篇 |
1997年 | 106篇 |
1996年 | 94篇 |
1995年 | 63篇 |
1994年 | 97篇 |
1993年 | 53篇 |
1992年 | 53篇 |
1991年 | 39篇 |
1990年 | 40篇 |
1989年 | 33篇 |
1988年 | 30篇 |
1987年 | 22篇 |
1986年 | 18篇 |
1985年 | 32篇 |
1984年 | 13篇 |
1983年 | 15篇 |
1982年 | 15篇 |
1981年 | 3篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1973年 | 2篇 |
1971年 | 2篇 |
1961年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of
these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture:
a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus.
We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with
knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot
analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins
form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that
EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the
plasma membrane to protect the cells during freezing stress. 相似文献
92.
Gao Kai Liu Meiyou Li Yuan Wang Lei Zhao Chao Zhao Xian Zhao Jinyi Ding Yi Tang Haifeng Jia Yanyan Wang Jingwen Wen Aidong 《Journal of molecular histology》2021,52(3):449-459
Journal of Molecular Histology - Currently, the excessive activation of N-methyl-D-aspartate receptors (NMDARs) is considered to be a crucial mechanism of brain injury. Lycium barbarum A (LyA) is a... 相似文献
93.
Hong-Li Gong Yi Shi Liang Zhou Chun-Ping Wu Peng-Yu Cao Lei Tao Chen Xu Dong-Sheng Hou Yue-Zhu Wang 《PloS one》2013,8(6)
The throat is an ecological assemblage involved human cells and microbiota, and the colonizing bacteria are important factors in balancing this environment. However, this bacterial community profile has thus been poorly investigated. The purpose of this study was to investigate the microbial biology of the larynx and to analyze the throat biodiversity in laryngeal carcinoma patients compared to a control population in a case-control study. Barcoded pyrosequencing analysis of the 16S rRNA gene was used. We collected tissue samples from 29 patients with laryngeal carcinoma and 31 control patients with vocal cord polyps. The findings of high-quality sequence datasets revealed 218 genera from 13 phyla in the laryngeal mucosa. The predominant communities of phyla in the larynx were Firmicutes (54%), Fusobacteria (17%), Bacteroidetes (15%), Proteobacteria (11%), and Actinobacteria (3%). The leading genera were Streptococcus (36%), Fusobacterium (15%), Prevotella (12%), Neisseria (6%), and Gemella (4%). The throat bacterial compositions were highly different between laryngeal carcinoma subjects and control population (p = 0.006). The abundance of the 26 genera was significantly different between the laryngeal cancer and control groups by metastats analysis (p<0.05). Fifteen genera may be associated with laryngeal carcinoma by partial least squares discriminant analysis (p<0.001). In summary, this study revealed the microbiota profiles in laryngeal mucosa from tissue specimens. The compositions of bacteria community in throat were different between laryngeal cancer patients and controls, and probably were related with this carcinoma. The disruption of this bio-ecological niche might be a risk factor for laryngeal carcinoma. 相似文献
94.
Chengrong Huang Juntao Kan Xu Liu Fenfen Ma Ba Hieu Tran Yunzeng Zou Shujun Wang Yi Zhun Zhu 《PloS one》2013,8(7)
Objective
Heart failure (HF) is one of the most serious diseases worldwide. S-propargyl-cysteine (SPRC), a novel modulator of endogenous hydrogen sulfide, is proved to be able to protect against acute myocardial ischemia. In order to produce more stable and sustainable hydrogen sulfide, we used controlled release formulation of SPRC (CR-SPRC) to elucidate possible cardioprotective effects on HF rats and investigate involved mechanisms on apoptosis and oxidation.Methods
Left coronary artery was occluded to induce HF model of rat. The survival rats were randomly divided into 7 groups after 24 hours and treated with drugs for 6 weeks. Echocardiographic indexes were recorded to determine cardiac function. TTC staining was performed to determine infarct size. Plasmatic level of hydrogen sulfide was detected by modified sulfide electrode. Activity of enzyme and expression of protein were determined by colorimetry and Western blot, respectively.Results
The cardioprotective effects of CR-SPRC on HF rats were confirmed by significant reduction of infarct size and improvement of cardiac function, with better effects compared to normal SPRC. CR-SPRC modulated antioxidant defenses by preserving levels of GSH, CAT and SOD and reducing CK leakage. In addition, CR-SPRC elevated ratio of Bcl-2/Bax and inhibited activity of caspases to protect against myocardial apoptosis. The cardioprotective effects of CR-SPRC were mediated by hydrogen sulfide.Conclusions
All experiment data indicated cardioprotective effects of CR-SPRC on HF rats. More importantly, CR-SPRC exerted better effects than normal SPRC in all respects, providing a new perspective on hydrogen sulfide-mediated drug therapy. 相似文献95.
检测Mdrl基因表达水平可预测白血病化疗效果,用原位杂交的方法可检测Mdrl在单个细胞的表达水平。本文用Rt-PCR的方法获得了一段特异的cDNA片段,将其克隆到PGEM4Z载体中,经DNA序列分析证明与文献报道一致,采用地高辛素(DIG)RNA标记试剂盒制备反义RNA探针,已初步用于临床骨髓涂片标本的原位杂交检测。 相似文献
96.
A 1 846 bp cDNA is isolated from a human tonsil cell λgt 11 cDNA library (ATCC No. 37546) with mAb 5D4 reactive strongly with human B cell line 3D5, but weakly with human B cell line Daudi and human T cell line Jurkat as a probe. RT-PCR also shows a strong reaction in 3D5 cell and a weak reaction in Daudi and Jurkat cell for 5D4 mRNA. There is an open reading frame from 88 to 1 209 bp in 5D4 cDNA encoding a 374 AA protein. Both the Northern blot analysis and the two consecutive stop codens before start coden demonstrate that the cDNA is a full-length cDNA. Secondary structure prediction suggests that there are a region from 295 to 334 AA in the protein with strong hydrophobicity and a transmembrane helix region with high score from 313 to 334 AA with an orientation from the inside to the outside of the cell. 相似文献
97.
Ying Wang Yunyun Zheng Min Wang Yi Gao Yazhong Xiao Hui Peng 《Standards in genomic sciences》2014,9(3):735-743
Anoxybacillus flavithermus subsp. yunnanensis is the only strictly thermophilic bacterium that is able to tolerate a broad range of toxic solvents at its optimal temperature of 55-60°C. The type strain E13T was isolated from water-sediment slurries collected from a hot spring. This study presents the draft genome sequence of A. flavithermus subsp. yunnanensis E13T and its annotation. The 2,838,393bp long genome (67 contigs) contains 3,035 protein-coding genes and 85 RNA genes, including 10 rRNA genes, and no plasmids. The genome information has been used to compare with the genomes from A. flavithermus subsp. flavithermus strains. 相似文献
98.
Min-Sik Kim Yi Zhong Shinichi Yachida N. V. Rajeshkumar Melissa L. Abel Arivusudar Marimuthu Keshav Mudgal Ralph H. Hruban Justin S. Poling Jeffrey W. Tyner Anirban Maitra Christine A. Iacobuzio-Donahue Akhilesh Pandey 《Molecular & cellular proteomics : MCP》2014,13(11):2803-2811
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (3–5). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl. 相似文献
99.
100.
Self‐Powered Wireless Sensor Node Enabled by a Duck‐Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy 下载免费PDF全文
Abdelsalam Ahmed Zia Saadatnia Islam Hassan Yunlong Zi Yi Xi Xu He Jean Zu Zhong Lin Wang 《Liver Transplantation》2017,7(7)
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers. 相似文献