首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113097篇
  免费   2365篇
  国内免费   3198篇
  2024年   60篇
  2023年   301篇
  2022年   660篇
  2021年   1156篇
  2020年   811篇
  2019年   1011篇
  2018年   12580篇
  2017年   11214篇
  2016年   8262篇
  2015年   1963篇
  2014年   1830篇
  2013年   1981篇
  2012年   6112篇
  2011年   14468篇
  2010年   13009篇
  2009年   9166篇
  2008年   10888篇
  2007年   12313篇
  2006年   1169篇
  2005年   1327篇
  2004年   1669篇
  2003年   1740篇
  2002年   1387篇
  2001年   669篇
  2000年   487篇
  1999年   318篇
  1998年   189篇
  1997年   174篇
  1996年   139篇
  1995年   105篇
  1994年   138篇
  1993年   107篇
  1992年   112篇
  1991年   101篇
  1990年   68篇
  1989年   65篇
  1988年   66篇
  1987年   50篇
  1986年   37篇
  1985年   52篇
  1984年   27篇
  1983年   40篇
  1982年   24篇
  1972年   247篇
  1971年   276篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 445 毫秒
871.
Conditional knock‐out (KO) of Polycomb Group (PcG) protein YY1 results in pro‐B cell arrest and reduced immunoglobulin locus contraction needed for distal variable gene rearrangement. The mechanisms that control these crucial functions are unknown. We deleted the 25 amino‐acid YY1 REPO domain necessary for YY1 PcG function, and used this mutant (YY1ΔREPO), to transduce bone marrow from YY1 conditional KO mice. While wild‐type YY1 rescued B‐cell development, YY1ΔREPO failed to rescue the B‐cell lineage yielding reduced numbers of B lineage cells. Although the IgH rearrangement pattern was normal, there was a selective impact at the Igκ locus that showed a dramatic skewing of the expressed Igκ repertoire. We found that the REPO domain interacts with proteins from the condensin and cohesin complexes, and that YY1, EZH2 and condensin proteins co‐localize at numerous sites across the Ig kappa locus. Knock‐down of a condensin subunit protein or YY1 reduced rearrangement of Igκ Vκ genes suggesting a direct role for YY1‐condensin complexes in Igκ locus structure and rearrangement.  相似文献   
872.
While numerous small ubiquitin‐like modifier (SUMO) conjugated substrates have been identified, very little is known about the cellular signalling mechanisms that differentially regulate substrate sumoylation. Here, we show that acetylation of SUMO E2 conjugase Ubc9 selectively downregulates the sumoylation of substrates with negatively charged amino acid‐dependent sumoylation motif (NDSM) consisting of clustered acidic residues located downstream from the core ψ‐K‐X‐E/D consensus motif, such as CBP and Elk‐1, but not substrates with core ψ‐K‐X‐E/D motif alone or SUMO‐interacting motif. Ubc9 is acetylated at residue K65 and K65 acetylation attenuates Ubc9 binding to NDSM substrates, causing a reduction in NDSM substrate sumoylation. Furthermore, Ubc9 K65 acetylation can be downregulated by hypoxia via SIRT1, and is correlated with hypoxia‐elicited modulation of sumoylation and target gene expression of CBP and Elk‐1 and cell survival. Our data suggest that Ubc9 acetylation/deacetylation serves as a dynamic switch for NDSM substrate sumoylation and we report a previously undescribed SIRT1/Ubc9 regulatory axis in the modulation of protein sumoylation and the hypoxia response.  相似文献   
873.
Autophagy is a vesicular trafficking pathway that regulates the degradation of aggregated proteins and damaged organelles. Initiation of autophagy requires several multiprotein signaling complexes, such as the ULK1 kinase complex and the Vps34 lipid kinase complex, which generates phosphatidylinositol 3-phosphate [PtdIns(3)P] on the forming autophagosomal membrane. Alterations in autophagy have been reported for various diseases, including myopathies. Here we show that skeletal muscle autophagy is compromised in mice deficient in the X-linked myotubular myopathy (XLMTM)-associated PtdIns(3)P phosphatase myotubularin (MTM1). Mtm1-deficient muscle displays several cellular abnormalities, including a profound increase in ubiquitin aggregates and abnormal mitochondria. Further, we show that Mtm1 deficiency is accompanied by activation of mTORC1 signaling, which persists even following starvation. In vivo pharmacological inhibition of mTOR is sufficient to normalize aberrant autophagy and improve muscle phenotypes in Mtm1 null mice. These results suggest that aberrant mTORC1 signaling and impaired autophagy are consequences of the loss of Mtm1 and may play a primary role in disease pathogenesis.  相似文献   
874.
Tumor necrosis factor (TNF) and the TNF receptor (TNFR) superfamily play very important roles for cell death as well as normal immune regulation. Previous studies have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. The purpose of this investigation was to examine the protective effect of remifentanil preconditioning in cerebral ischemia/reperfusion injury (CIR) and its possible molecular mechanism. Results showed that Remifentanil pretreatment significantly decreased the CD4+ and increased the CD8+ in cerebral tissues. Additionally, CD4+/CD8+ in CIR + Remifentanil group was markedly lower than that in CIR group. TNF-α and TNFR1 in CIR + Remifentanil group rats was found to be significant lower than that in CIR group rats. The expression levels of Cyt-c, caspase-3, caspase-9 and pJNK proteins in brain of CIR + Remifentanil group rats were found to significantly decreased compared to CIR group rats. In addition, decreased ROS level indirectly inhibit JNK activation and cell death in CIR rat receiving Remifentanil preconditioning. From current experiment results, at least two signal pathways involve into the process of Remifentanil preconditioning inhibiting cerebral damage induced by ischemia reperfusion. The inhibitory effects of Remifentanil preconditioning on the brain damage are achieved probably through blocking the activation of TNF-α/TNFR1, JNK signal transduction pathways, which implies that Remifentanil preconditioning may be a potential and effective way for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TNF-α/TNFR1, JNK signal pathways. Taken together, this study indicated that regulation of the TNF-α/TNFR1 and JNK signal pathways may provide a new therapy for cerebral damage induced by ischemia and reperfusion.  相似文献   
875.
Two novel single nucleotide polymorphisms (SNPs; rs7529229 and rs2228145) in the interleukin-6 receptor (IL6R) gene have recently been associated with coronary heart disease (CHD) in a European population. We sought to replicate this finding and to investigate associations of these two SNPs with the severity and clinical phenotypes of premature CHD in a Chinese Han population. A total of 418 patients were studied, including 187 cases with coronary stenosis ≥50 % or acute myocardial infarction (males < 55 years and females < 65 years) and 231 controls without documented CHD. A ligase detection reaction was performed to detect rs7529229 and rs2228145. There were no differences between the controls and premature CHD groups in the frequencies for the three genotypes and alleles of rs7529229 and rs2228145 (all P > 0.05), nor did they differ between the two groups when grouped by gender (all P > 0.05). There were also no associations between these two SNPs and the severity of coronary lesions or clinical phenotypes of premature CHD (all P > 0.05). Our results do not support an association between rs7529229 or rs2228145 with premature CHD in the Chinese Han population. Further studies are warranted to elucidate the role of these two SNPs in the development of atherosclerosis and CHD.  相似文献   
876.
Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis.  相似文献   
877.
Workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational illnesses and injuries. On the other hand, local and regional heat therapy has been used for the treatment of some cancers, such as liver cancer, lung cancer, and kidney cancer. Although heat stress has been shown to induce the accumulation of p53 protein, a key regulator of cell cycle, apoptosis, DNA repair, and autophagy, how it regulates p53 protein accumulation and what the p53 targets are remain unclear. Here, we show that, among various genotoxic stresses, including ionizing radiation (IR) and ultraviolet (UV) radiation, heat stress contributes significantly to increase p53 protein levels in normal liver cells and liver cancer cells. Heat stress did not increase p53 mRNA expression as well as p53 promoter activity. However, heat stress enhanced the half-life of p53 protein. Moreover, heat stress increased the expression of puma and light chain 3 (LC-3), which are associated with the apoptotic and autophagic function of p53, respectively, whereas it did not change the expression of the cell cycle regulators p21, 14-3-3δ, and GADD45α, suggesting that heat-triggered alteration of p53 selectively modulates the downstream targets of p53. Our study provides a novel mechanism by which heat shock stimulates p53 protein accumulation, which is different from common DNA damages, such as IR and UV, and also provides new molecular basis for heat injuries or heat therapy.  相似文献   
878.
879.
880.
Studies focusing on the association of gene methylthioadenosine phosphorylase (MTAP) with the risk of coronary artery disease (CAD) and myocardial infarction (MI) are limited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号