全文获取类型
收费全文 | 335篇 |
免费 | 15篇 |
专业分类
350篇 |
出版年
2023年 | 2篇 |
2021年 | 2篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 16篇 |
2014年 | 22篇 |
2013年 | 21篇 |
2012年 | 29篇 |
2011年 | 16篇 |
2010年 | 11篇 |
2009年 | 10篇 |
2008年 | 15篇 |
2007年 | 21篇 |
2006年 | 14篇 |
2005年 | 23篇 |
2004年 | 14篇 |
2003年 | 7篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 8篇 |
1999年 | 8篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 3篇 |
1971年 | 3篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有350条查询结果,搜索用时 15 毫秒
111.
An endo-acting xylanase is isolated from the culture medium of Clostridium sp. BOH3 when xylan, glucose, xylose, or sugarcane bagasse hydrolysate (SBH) is used as a carbon source. Crude xylanase is purified by using an anionic Q-column with a yield of 39 %. The pure xylanase has a molecular weight of 35.8 kDa, and it shows optimal activity at pH 5 and 60 °C. When beechwood xylan is used as a substrate, this xylanase liberates short oligosaccharides (XOS) predominantly, ranging from xylobiose (X2) to xylopentaose (X5). However, no xylose can be detected, suggesting that this is an endo-β-1,4-xylanase. Kinetic study of this xylanase reveals that K m and V max are 1.36 mg/ml and 212 μmol/(min. mg protein), respectively. On the basis of amino acid sequence, this enzyme shows homology to xylanase (xynb) from Clostridium acetobutylicum ATCC 824, but this enzyme has several distinctive characteristics. For example, its activity can be enhanced with the addition of divalent metal ions, and it produces XOS exclusively when xylan is used as a substrate. These unique characteristics suggest that this is a new enzyme. 相似文献
112.
The lipid second messenger diacylglycerol acts by binding to the C1 domains of target proteins, which translocate to cell membranes and are allosterically activated. Here we report the crystal structure at 3.2 A resolution of one such protein, beta2-chimaerin, a GTPase-activating protein for the small GTPase Rac, in its inactive conformation. The structure shows that in the inactive state, the N terminus of beta2-chimaerin protrudes into the active site of the RacGAP domain, sterically blocking Rac binding. The diacylglycerol and phospholipid membrane binding site on the C1 domain is buried by contacts with the four different regions of beta2-chimaerin: the N terminus, SH2 domain, RacGAP domain, and the linker between the SH2 and C1 domains. Phospholipid binding to the C1 domain triggers the cooperative dissociation of these interactions, allowing the N terminus to move out of the active site and thereby activating the enzyme. 相似文献
113.
Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro 总被引:11,自引:0,他引:11
Chen X Mao Z Liu S Liu H Wang X Wu H Wu Y Zhao T Fan W Li Y Yew DT Kindler PM Li L He Q Qian L Wang X Fan M 《Molecular biology of the cell》2005,16(7):3140-3151
Ciliary neurotrophic factor (CNTF) is primarily known for its important cellular effects within the nervous system. However, recent studies indicate that its receptor can be highly expressed in denervated skeletal muscle. Here, we investigated the direct effect of CNTF on skeletal myoblasts of adult human. Surprisingly, we found that CNTF induced the myogenic lineage-committed myoblasts at a clonal level to dedifferentiate into multipotent progenitor cells--they not only could proliferate for over 20 passages with the expression absence of myogenic specific factors Myf5 and MyoD, but they were also capable of differentiating into new phenotypes, mainly neurons, glial cells, smooth muscle cells, and adipocytes. These "progenitor cells" retained their myogenic memory and were capable of redifferentiating into myotubes. Furthermore, CNTF could activate the p44/p42 MAPK and down-regulate the expression of myogenic regulatory factors (MRFs). Finally, PD98059, a specific inhibitor of p44/p42 MAPK pathway, was able to abolish the effects of CNTF on both myoblast fate and MRF expression. Our results demonstrate the myogenic lineage-committed human myoblasts can dedifferentiate at a clonal level and CNTF is a novel regulator of skeletal myoblast dedifferentiation via p44/p42 MAPK pathway. 相似文献
114.
Identification of genetic variants in erythrocyte lysate by two-dimensional gel electrophoresis. 总被引:4,自引:4,他引:4
B B Rosenblum J V Neel S M Hanash J L Joseph N Yew 《American journal of human genetics》1984,36(3):601-612
Two-dimensional gel electrophoresis followed by silver-staining has been employed to study 27 red cell lysates for genetic variation. Forty-six polypeptides selected without respect to variability were considered suitable for scoring. Only 23 of the total of 1,242 polypeptides could not be scored unambiguously. Of the remaining 1,219 polypeptides, 38 exhibited the combination of a normal and a variant polypeptide. All variants were present in either the father or the mother of the subjects. The observed index of heterozygosity was 3.1% +/- 0.5%. 相似文献
115.
Type IX collagen is a key component of the extracellular matrix of
cartilage where it occurs at the surfaces of type II collagen fibrils as a
glycanated molecule. The function of the glycosaminoglycan (GAG) side chain
of the molecule is, however, unknown. We have shown that type IX collagen
in chicken sternal cartilage is synthesized with a unimodal distribution of
GAG chain size, but at post 17 days of development three predominant
glycanforms of type IX collagen accumulate. Such accumulation did not occur
in sterna from day 15 embryos. In day 17 embryos predominant glycanforms
were found in the caudal region of the sternum. By day 19 of development
the three predominant glycanforms are widespread throughout the caudal and
cephalic regions. The results indicate that developmental and anatomical
changes occur to type IX collagen that depend on the size of the GAG chain
attached to the alpha2(IX) chain of the molecule.
相似文献
116.
We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second beta-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth beta-strands, respectively, as well as ligands for an essential Mg2+, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth beta-strands, respectively. We screened a library of 46 acid sugars and discovered that only d-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (kcat = 7.3 s(-1); kcat/KM = 8.5 x 10(4) M(-1) s(-1)) are consistent with assignment of the d-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the alpha-proton to generate a Mg2+-stabilized enediolate intermediate, and the vinylogous beta-elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by 1H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a "simple" extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg2+-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product. 相似文献
117.
Calvert ME Wright GD Leong FY Chiam KH Chen Y Jedd G Balasubramanian MK 《The Journal of cell biology》2011,195(5):799-813
In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types. 相似文献
118.
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway. 相似文献
119.
Sheila Xinxuan Soh Joshua Yew Suang Lim John W. J. Huang Nan Jiang Allen Eng Juh Yeoh S. Tiong Ong 《PloS one》2014,9(8)
A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers. 相似文献
120.
Soon Yew Tang 《Biochemical and biophysical research communications》2010,394(1):1-2327
Traditional medicinal plants have a long history of therapeutic use. The beneficial health effects of medicinal plants rich in polyphenols are often attributed to their potent antioxidant activities, as established in vitro, since diets rich in polyphenols are epidemiologically associated with a decreased incidence of age-related diseases in humans. However, medicinal plants may also exert pro-oxidant effects that up-regulate endogenous protective enzymes. Care is needed when studying the biological effects of medicinal plants in cell culture because some polyphenols oxidize readily in culture media. This review summarizes the data we have obtained from in vitro and in vivo (Caenorhabditis elegans) studies examining the diverse effects of traditional medicinal plants and their modes of action. 相似文献