首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   48篇
  578篇
  2023年   4篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   17篇
  2018年   15篇
  2017年   13篇
  2016年   18篇
  2015年   31篇
  2014年   38篇
  2013年   29篇
  2012年   47篇
  2011年   31篇
  2010年   27篇
  2009年   17篇
  2008年   24篇
  2007年   27篇
  2006年   18篇
  2005年   32篇
  2004年   21篇
  2003年   17篇
  2002年   19篇
  2001年   13篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   6篇
  1978年   2篇
  1976年   4篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1968年   2篇
排序方式: 共有578条查询结果,搜索用时 8 毫秒
71.
Li H  Ng TY  Yew YK  Lam KY 《Biomacromolecules》2005,6(1):109-120
The modulation of the swelling ability of the hydrogel matrix by pH-stimulus enables the dynamic control of the swelling forces, thereby obtaining effective diffusivity and permeability of the solutes, or mechanical energy from the hydrogel. In this work, a chemo-electro-mechanical model describing hydrogel behavior, based on multi-field effects, is developed to simulate the swelling and shrinking of these fascinating bio-materials, and it is termed the multi-effect-coupling pH-stimulus (MECpH) model. This model accounts for the ionic fluxes within both the hydrogel and solution, the coupling between the electric field, ionic fluxes, and mechanical deformations of the hydrogel. The main contribution of this model is to incorporate the relationship between the concentrations of the ionized fixed-charge groups and the diffusive hydrogen ion, which follows a Langmuir isotherm, into the Poisson-Nernst-Planck system. To validate this MECpH model, one-dimensional steady-state simulations under varying pH solution are carried out via a meshless Hermite-Cloud methodology, and the numerical results are compared with available experimental data. It is shown that the presently developed MECpH model is accurate, efficient, and numerically stable.  相似文献   
72.
The Xenopus cyclin-dependent kinase (CDK) inhibitor, p27(Xic1) (Xic1), binds to CDK2-cyclins and proliferating cell nuclear antigen (PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin-mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha-primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild-type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA-depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.  相似文献   
73.
Nucleofection is a powerful non-viral transfection technique that can deliver plasmid DNA with high efficiency to cells that are traditionally difficult to transfect. In this study, we demonstrate that nucleofection of astrocytes grown in primary cell culture resulted in 76 ± 9% transfected cells and low cytotoxicity. However, the nucleofected astrocytes showed a reduced re-attachment to the growth media when replated and subsequent impairment of proliferation. This led to substantially decreased cell densities during the initial 72 h following transfection. Furthermore, these cells were less efficient at producing wound closure in a scratch model of injury. Nucleofection also resulted in the generation of a small proportion of polynucleated cells. The findings demonstrate that nucleofection provides a valuable technique for delivering DNA to astrocytes in culture. However, considerable care is needed in designing and interpreting such studies because of long-lasting changes induced in key properties of these cells by the nucleofection process.  相似文献   
74.
In recent years, increased interest has been directed towards hydrogen sulfide (H2S) as the third gasotransmitter and its role in various diseases. Cystathionine-γ-lyase (CSE) is one of the enzymes responsible for the endogenous production of H2S in mammals. With the aid of the crystal structures of human CSE and site-directed mutagenesis studies, we have identified several amino acid residues in CSE that are actively involved in the catalysis of H2S production. Contrary to reports suggesting that Tyr114 is required for substrate binding, our results reveal a significant increase in the production of H2S upon mutation of Tyr114 to phenylalanine. This is attributed to an increased rate of pyridoxal 5′-phosphate (PLP) regeneration due to weakened π-stacking interactions between Phe114 and PLP. Thr189 is also identified as a crucial residue where hydrogen bonding to Asp187 keeps the latter in an optimal position for hydrogen bonding to the pyridoxal nitrogen of PLP. Furthermore, mutation of Glu339 to lysine, alanine or tyrosine reveals the importance of the hydrophobicity of the 339th amino acid in determining the specificity of the enzyme for the catalysis of α,γ-elimination or α,β-elimination reaction. Our study also shows that the rate of H2S production is increased with increasing exogenous PLP concentration, hence supporting our hypothesis that apo-CSE is formed during the catalysis of H2S production. Taken together, these findings suggest novel routes towards the design of activators or inhibitors that modulate the production of H2S; these modulators may also serve as lead compounds in the development of drugs or mechanistic probes in the study of various H2S-related diseases.  相似文献   
75.
Current treatment options for advanced metastatic melanoma are limited to experimental regimen that provide poor survival outcomes. Immunotherapy is a promising alternative and we recently reported a clinical trial in which 6 out of 19 patients enrolled had objective clinical responses to a fully autologous melanoma/dendritic cell vaccine. The mechanism of the vaccine is not well understood, but we hypothesized that general immunocompetence may be a determinant of clinical response. We therefore examined the immune status of an expanded series of 21 patients who displayed varying clinical responses to the melanoma/dendritic cell vaccine. Immunocompetence was assessed using in vitro assays of lymphocyte function: survival, proliferation and cytokine responses to mitogen stimulation as well as T-cell receptor zeta expression and lymphocyte subset analysis. Although lymphocytes from patients mostly performed comparably to age-matched and sex-matched controls, in some assays we identified significant differences between complete clinical responders and other patients, both before and following vaccination. Surprisingly, before vaccination, only lymphocytes from clinical responder patients showed impaired in vitro survival. Following vaccination, T lymphocyte survival improved and cells recovered their ability to produce the Th1-associated cytokines TNF and IFN-gamma in response to anti-CD3 stimulation in vitro. No increase in Th1 cytokine production was observed in lymphocytes from patients who experienced partial clinical responses or progressive disease. We conclude that, before vaccination, patients who go on to have complete responses have immune characteristics suggestive of high cell turnover and low Th1-associated cytokine production, and that these can be reversed with vaccination. These results have potential implications for future immunotherapeutic strategies.  相似文献   
76.
The responses of division rate, cell volume, cellular carbon (C) and nitrogen (N), cellular pigments and optical characteristics to changes in salinity were examined in the dinoflagellate Heterocapsa circularisquama. The physiological and optical characteristics of H. circularisquama were significantly affected by changes in salinity. When cells were exposed to different salinities, they exhibited physiological acclimation by adjusting their cellular properties associated with growth. This could be a beneficial tactic for ensuring proliferation and limiting damages induced by adverse environmental factors. The results of this study could be essential for assisting in the development of growth models for H. circularisquama.  相似文献   
77.
78.
79.
Junctional adhesion molecule (JAM) is involved in tight junction (TJ) formation in epithelial cells. Three JAMs (A, B, and C) are expressed in rat hepatocytes, but only rat JAM-A is present in polarized WIF-B cells, a rat-human hepatic line. We used knockdown (KD) and overexpression in WIF-B cells to determine the role of JAM-A in the development of hepatic polarity. Expression of rat JAM-A short hairpin RNA resulted in approximately 50% KD of JAM-A and substantial loss of hepatic polarity, as measured by the absence of apical cysts formed by adjacent cells and sealed by TJ belts. When inhibitory RNA-resistant human JAM-A (huWT) was expressed in KD cells, hepatic polarity was restored. In contrast, expression of JAM-A that either lacked its PDZ-binding motif (huDeltaC-term) or harbored a point mutation (T273A) did not complement, indicating that multiple sites within JAM-A's cytoplasmic tail are required for the development of hepatic polarity. Overexpression of huWT in normal WIF-B cells unexpectedly blocked WIF-B maturation to the hepatic phenotype, as did expression of three huJAM-A constructs with single point mutations in putative phosphorylation sites. In contrast, huDeltaC-term was without effect, and the T273A mutant only partially blocked maturation. Our results show that JAM-A is essential for the development of polarity in cultured hepatic cells via its possible phosphorylation and recruitment of relevant PDZ proteins and that hepatic polarity is achieved within a narrow range of JAM-A expression levels. Importantly, formation/maintenance of TJs and the apical domain in hepatic cells are linked, unlike simple epithelia.  相似文献   
80.
Vitamin A plays an essential role in vertebrate embryogenesis. In the present study, pregnant vitamin A-deficient (VAD) rats were maintained during early pregnancy on the short half-life vitamin A metabolite, all-trans retinoic acid (atRA), in an amount sufficient to support normal development to E10.5, with a higher level of atRA (250 μg atRA/g diet) provided from embryonic day (E) 8.5-10.5 to prevent mid-gestational resorption. When limiting amounts of atRA (1.5 or 12 μg/g diet) were provided after E10.5, a highly reproducible and penetrant state of late fetal vitamin A deficiency (late VAD) was induced in the organs of developing fetuses. In addition, late VAD fetuses displayed both anteriorization of cervical regions and novel posteriorization events at the thoracic and sacral levels of the skeleton, and showed sternal and pelvic malformations not previously observed in early VAD or genetic models. The expression of several Hox genes (Hoxd3 and Hoxb4) was altered in late VAD embryos, with a reduction in Hoxd3 noted as early as 1 day after instituting deficiency. All late VAD-induced malformations were prevented by the addition of retinol starting at E10.5, whereas provision of a high level of atRA throughout pregnancy improved but could not completely rescue the development of all organ systems. This work defines a nutritional model in which vitamin A deficiency can be induced during fetal development, and reveals new functions for the vitamin in the development of the axial and appendicular skeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号