首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
  62篇
  2021年   1篇
  2019年   3篇
  2016年   1篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   7篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
21.
Targeted DNA integration is commonly used to eliminate position effects on transgene expression. Integration can be targeted to specific sites in the genome via both homology‐based and homology‐independent processes. Both pathways start the integration process with a site‐specific break in the chromosome, typically from a zinc‐finger nuclease (ZFN). We previously described an efficient homology‐independent targeted integration technique that captures short (<100 bp) pieces of DNA at chromosomal breaks created by ZFNs. We show here that inclusion of a nuclease target site on the donor plasmid followed by in vivo nuclease cleavage of both the donor and the chromosome results in efficient integration of large, transgene‐sized DNA molecules into the chromosomal double‐strand break. Successful targeted integration via in vivo donor linearization is demonstrated at five distinct loci in two mammalian cell types, highlighting the generality of the approach. Finally, we show that CHO cells, a cell type recalcitrant to homology‐based integration, are proficient at capture of in vivo‐linearized transgene donors. Moreover, we demonstrate knockout of the hamster FUT8 gene via the simultaneous ZFN‐ or TALE nuclease‐mediated integration of an antibody cassette. Our results enable efficient targeted transgene addition to cells and organisms that fare poorly with traditional homology‐driven approaches. Biotechnol. Bioeng. 2013; 110: 871–880. © 2012 Wiley Periodicals, Inc.  相似文献   
22.
Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause “attaching and effacing” (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.  相似文献   
23.
24.
We engineered and employed a chaperone‐like amyloid‐binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross‐reacted with amyloid beta‐peptide (Aβ42) protofibrils, but not with Aβ40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1‐hIAPP complex cross‐react with Aβ42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation‐specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation‐sensitive and sequence‐independent and can target more than one type of protofibril species.  相似文献   
25.
DNA tandem repeats (TRs) are ubiquitous genomic features which consist of two or more adjacent copies of an underlying pattern sequence. The copies may be identical or approximate. Variable number of tandem repeats or VNTRs are polymorphic TR loci in which the number of pattern copies is variable. In this paper we describe VNTRseek, our software for discovery of minisatellite VNTRs (pattern size ≥ 7 nucleotides) using whole genome sequencing data. VNTRseek maps sequencing reads to a set of reference TRs and then identifies putative VNTRs based on a discrepancy between the copy number of a reference and its mapped reads. VNTRseek was used to analyze the Watson and Khoisan genomes (454 technology) and two 1000 Genomes family trios (Illumina). In the Watson genome, we identified 752 VNTRs with pattern sizes ranging from 7 to 84 nt. In the Khoisan genome, we identified 2572 VNTRs with pattern sizes ranging from 7 to 105 nt. In the trios, we identified between 2660 and 3822 VNTRs per individual and found nearly 100% consistency with Mendelian inheritance. VNTRseek is, to the best of our knowledge, the first software for genome-wide detection of minisatellite VNTRs. It is available at http://orca.bu.edu/vntrseek/.  相似文献   
26.
Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion.  相似文献   
27.
28.
Mutators have been shown to hitchhike in asexual populations when the anticipated beneficial mutation supply rate of the mutator subpopulation, NU(b) (for subpopulation of size N and beneficial mutation rate U(b)) exceeds that of the wild-type subpopulation. Here, we examine the effect of total population size on mutator dynamics in asexual experimental populations of Saccharomyces cerevisiae. Although mutators quickly hitchhike to fixation in smaller populations, mutator fixation requires more and more time as population size increases; this observed delay in mutator hitchhiking is consistent with the expected effect of clonal interference. Interestingly, despite their higher beneficial mutation supply rate, mutators are supplanted by the wild type in very large populations. We postulate that this striking reversal in mutator dynamics is caused by an interaction between clonal interference, the fitness cost of the mutator allele, and infrequent large-effect beneficial mutations in our experimental populations. Our work thus identifies a potential set of circumstances under which mutator hitchhiking can be inhibited in natural asexual populations, despite recent theoretical predictions that such populations should have a net tendency to evolve ever-higher genomic mutation rates.  相似文献   
29.
We previously demonstrated high-frequency, targeted DNA addition mediated by the homology-directed DNA repair pathway. This method uses a zinc-finger nuclease (ZFN) to create a site-specific double-strand break (DSB) that facilitates copying of genetic information into the chromosome from an exogenous donor molecule. Such donors typically contain two ∼750 bp regions of chromosomal sequence required for homology-directed DNA repair. Here, we demonstrate that easily-generated linear donors with extremely short (50 bp) homology regions drive transgene integration into 5–10% of chromosomes. Moreover, we measure the overhangs produced by ZFN cleavage and find that oligonucleotide donors with single-stranded 5′ overhangs complementary to those made by ZFNs are efficiently ligated in vivo to the DSB. Greater than 10% of all chromosomes directly incorporate this exogenous DNA via a process that is dependent upon and guided by complementary 5′ overhangs on the donor DNA. Finally, we extend this non-homologous end-joining (NHEJ)-based technique by directly inserting donor DNA comprising recombinase sites into large deletions created by the simultaneous action of two separate ZFN pairs. Up to 50% of deletions contained a donor insertion. Targeted DNA addition via NHEJ complements our homology-directed targeted integration approaches, adding versatility to the manipulation of mammalian genomes.  相似文献   
30.
As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations (‘drivers’). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号