首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4644篇
  免费   366篇
  国内免费   3篇
  5013篇
  2023年   12篇
  2022年   42篇
  2021年   80篇
  2020年   48篇
  2019年   60篇
  2018年   62篇
  2017年   72篇
  2016年   132篇
  2015年   212篇
  2014年   219篇
  2013年   300篇
  2012年   384篇
  2011年   379篇
  2010年   256篇
  2009年   225篇
  2008年   297篇
  2007年   327篇
  2006年   297篇
  2005年   248篇
  2004年   265篇
  2003年   235篇
  2002年   215篇
  2001年   45篇
  2000年   37篇
  1999年   56篇
  1998年   69篇
  1997年   45篇
  1996年   40篇
  1995年   47篇
  1994年   39篇
  1993年   35篇
  1992年   28篇
  1991年   27篇
  1990年   27篇
  1989年   19篇
  1988年   14篇
  1987年   13篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1974年   3篇
  1972年   5篇
  1971年   3篇
  1966年   4篇
排序方式: 共有5013条查询结果,搜索用时 15 毫秒
91.
A molecular dissection of the glycoprotein hormone receptors   总被引:11,自引:0,他引:11  
In glycoprotein hormone receptors, a subfamily of rhodopsin-like G protein-coupled receptors, the recognition and activation steps are carried out by separate domains of the proteins. Specificity of recognition of the hormones thyrotropin (TSH), lutropin (LH), human chorionic gonadotropin (hCG) and follitropin (FSH) involves leucine-rich repeats (LRRs) present in an N-terminal ectodomain, and can be associated with a limited number of residues at key positions of the LRRs. The mechanism by which binding of the hormones results in activation is proposed to involve switching of the ectodomain from a tethered inverse agonist to a full agonist of the serpentine, rhodopsin-like region of the receptor. Unexpectedly, the picture is complicated by the observation that promiscuous activation of one of the receptors (FSHr) by hCG or TSH can result from activating mutations affecting the serpentine region of the receptors.  相似文献   
92.
Wound-healing studies in transgenic and knockout mice   总被引:4,自引:0,他引:4  
Injury to the skin initiates a cascade of events including inflammation, new tissue formation, and tissue remodeling, that finally lead to at least partial reconstruction of the original tissue. Historically, animal models of repair have taught us much about how this repair process is orchestrated and, over recent years, the use of genetically modified mice has helped define the roles of many key molecules. Aside from conventional knockout technology, many ingenious approaches have been adopted, allowing researchers to circumvent such problems as embryonic lethality, or to affect gene function in a tissue-or temporal-specific manner. Together, these studies provide us with a growing source of information describing, to date, the in vivo function of nearly 100 proteins in the context of wound repair. This article focuses on the studies in which genetically modified mouse models have helped elucidate the roles that many soluble mediators play during wound repair, encompassing the fibroblast growth factor (FGF) and transforming growth factor-β (TGF-β) families and also data on cytokines and chemokines. Finally, we include a table summarizing all of the currently published data in this rapidly growing field. For a regularly updated web archive of studies, we have constructed a Compendium of Published Wound Healing Studies on Genetically Modified Mice which is available at http://icbxs.ethz.ch/members/grose/woundtransgenic/home.html.  相似文献   
93.
94.
Down-regulation of detoxification genes, notably cytochrome P450 (CYPs), in primary hepatocyte cultures is a long-standing and major concern. We evaluated the influence of medium flow in this model. Hepatocytes isolated from 12 different liver donors were cultured either in a multichamber modular bioreactor (MCmB, flow rate 250-500 μL/min) or under standard/static conditions, and the expression of 32 genes, enzyme activities and biological parameters were measured 7-21 days later. mRNA expression of genes involved in xenobiotic/drug metabolism and transport, including CYP1A1, 1A2, 2B6, 2C9, 3A4 (and activities for some of them), UDP-glucuronosyltransferase (UGT) 1A1, UGT2B4, UGT2B7, glutathione S-transferase (GSTα), and multidrug resistance protein 1 (MDR1) and MRP2, were specifically up-regulated by medium flow as compared with static controls in all cultures tested. In 2-week-old cultures, expression of detoxification genes reached levels close to or higher than those measured in freshly isolated hepatocytes. In contrast, CYP2D6 and most of other tested genes were not affected by medium flow. We conclude that medium flow specifically interferes with, and up-regulates, the activity of xenosensors and/or the expression of detoxification genes in primary human hepatocytes. Down-regulation of detoxification genes in conventional (static) cultures is therefore partly a consequence of the absence of medium circulation.  相似文献   
95.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   
96.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to fatty acid ligands. Their regulation by post-translational modifications has been reported but is poorly understood. In the present study, we investigated whether ligand binding affects the turnover and ubiquitination of the PPARbeta subtype (also known as PPARdelta). Our data show that the ubiquitination and degradation of PPARbeta is not significantly influenced by the synthetic agonist GW501516 under conditions of moderate PPARbeta expression. By contrast, the overexpression of PPARbeta dramatically enhanced its degradation concomitant with its polyubiquitination and the formation of high molecular mass complexes containing multiple, presumably oligomerized PPARbeta molecules that lacked stoichiometical amounts of the obligatory PPARbeta dimerization partner, retinoid X receptor. The formation of these apparently aberrant complexes, as well as the ubiquitination and destabilization of PPARbeta, were strongly inhibited by GW501516. Our findings suggest that PPARbeta is subject to complex post-translational regulatory mechanisms that partly may serve to safeguard the cell against deregulated PPARbeta expression. Furthermore, our data have important implications regarding the widespread use of overexpression systems to evaluate the function and regulation of PPARs.  相似文献   
97.
Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1 -/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/ = 50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (−20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1 -/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain.  相似文献   
98.
99.
Stroke is among the most frequent causes of death and adult disability, especially in highly developed countries. However, treatment options to date are very limited. To meet the need for novel therapeutic approaches, experimental stroke research frequently employs rodent models of focal cerebral ischaemia. Most researchers use permanent or transient occlusion of the middle cerebral artery (MCA) in mice or rats.Proximal occlusion of the middle cerebral artery (MCA) via the intraluminal suture technique (so called filament or suture model) is probably the most frequently used model in experimental stroke research. The intraluminal MCAO model offers the advantage of inducing reproducible transient or permanent ischaemia of the MCA territory in a relatively non-invasive manner. Intraluminal approaches interrupt the blood flow of the entire territory of this artery. Filament occlusion thus arrests flow proximal to the lenticulo-striate arteries, which supply the basal ganglia. Filament occlusion of the MCA results in reproducible lesions in the cortex and striatum and can be either permanent or transient. In contrast, models inducing distal (to the branching of the lenticulo-striate arteries) MCA occlusion typically spare the striatum and primarily involve the neocortex. In addition these models do require craniectomy. In the model demonstrated in this article, a silicon coated filament is introduced into the common carotid artery and advanced along the internal carotid artery into the Circle of Willis, where it blocks the origin of the middle cerebral artery. In patients, occlusions of the middle cerebral artery are among the most common causes of ischaemic stroke. Since varying ischemic intervals can be chosen freely in this model depending on the time point of reperfusion, ischaemic lesions with varying degrees of severity can be produced. Reperfusion by removal of the occluding filament at least partially models the restoration of blood flow after spontaneous or therapeutic (tPA) lysis of a thromboembolic clot in humans.In this video we will present the basic technique as well as the major pitfalls and confounders which may limit the predictive value of this model.  相似文献   
100.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号