首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2006年   3篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1991年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有74条查询结果,搜索用时 62 毫秒
41.
Somatic embryogenesis in cork oak (Quercus suber L.) is an efficient tool that allows the production of large number of embryos from selected quality and productive trees. Temporary immersion systems (TIS) are an alternative to semi-solid or liquid culture that combine the advantages of liquid culture and avoid the associated problems. Parameters that affect the TIS multiplication efficiency of Q. suber L. embryogenic cultures were evaluated. Immersion frequencies of 1 min every 6 or 4 h increased the fresh weight 3.7 or 7.5-fold compared with an immersion frequency of 1 min every 12 h or cultures on semi-solid medium, respectively. The cellular fate of embryogenic cultures was also affected by the immersion frequency, 1 min every 6 h was the best for mass propagation of proliferative developmental stages (embryogenic calli and embryo clusters) while 1 min every 4 h promoted the formation of single, fully developed cotyledonary embryos. An initial amount of 1.5 g fresh weight of proliferative tissues produced the best results in RITA® containers while 0.5 g of embryogenic callus was the best for semi-solid cultures.  相似文献   
42.
Hohenbergia penduliflora (A. Rich.) Mez. inhabits the protected ecological area of Cunagua Highland, Ciego de Ávila, Cuba. The availability of this plant for experimental purposes is exceedingly limited. Tissue cultured plants of this specie, would be useful for propagation purposes. Experiments were carried out to optimize the micropropagation process from the disinfection of fruits to ex vitro hardening of regenerated plantlets. The best results were obtained when seeds were disinfected with 2 % (v:v) sodium hypochlorite for 20 min and placed in vitro for 45 days for seed germination. Tissue cultured shoots (1 cm) with vertical wounds in the basal region (5 mm long) were placed in a medium containing Murashige and Skoog (MS) salts, 100 mg l?1 myo-inositol, 0.1 mg l?1 thiamine-HCl, 30 g l?1 sucrose, 8.8 μM 6-benzyladenine (BA) and 1.6 μM naphthalene acetic acid (NAA). Shoots were proliferated for 45 days to obtain 8.21 new shoots per explant; they were subsequently divided and rooted on a medium containing 1.6 μM NAA for 30 days. For ex vitro hardening, plastic trays containing 82 cm3 of filter-cake-sugarcane ashes were used; 100 % survival rate was recorded. After 6 months of hardening, plants were established ex vitro and ready for protease extraction. Comparisons between protein contents, proteolytic activities and specific proteolytic activities of extracts from stems of macro- and micropropagated plants were acquired. Tissue cultured stems showed statistically lower figures which is why Ethrel was tested here to increase proteolytic activity in micropropagated plant stems. After Ethrel applications, protein contents, proteolytic activities and specific proteolytic activities of extracts from stems were the three main indicators recorded. However, other biochemical effects of Ethrel were also evaluated, such as, levels of chlorophyll pigments, malondialdehyde and other aldehydes; and superoxide dismutase, and guaiacol peroxidase activities. Rising concentrations of Ethrel (0, 1.5, 3.0, 4.5 and 6.0 mg l?1) decreased protein contents at 72 h but increased proteolytic and specific proteolytic activities of stem extracts. Ethrel was effective in increasing proteolytic activity in in vitro culture-derived plant stems, at a level higher than in field-grown plant stems. Moreover, Ethrel increased superoxide dismutase and guaiacol peroxidase-specific activities in leaves; and decreased chlorophyll pigments. Ethrel did not affect levels of malondialdehyde and other aldehydes.  相似文献   
43.
The Ste5 protein forms a scaffold that associates and regulates the components of the mitogen-activated protein (MAP) kinase cascade that controls mating-pheromone-mediated signaling in the yeast Saccharomyces cerevisiae. Although it is known that the MEK kinase of the pathway, Ste11, associates with Ste5, details of this interaction have not been established. We identified a Ras-binding-domain-like (RBL) region in the Ste11 protein that is required specifically for the kinase to function in the mating pathway. This module is structurally related to domains in other proteins that mediate Ras-MAP kinase kinase kinase associations; however, this RBL module does not interact with Ras, but instead binds the PH domain of the Ste5 scaffold. Structural and functional studies suggest that the key role of this PH domain is to mediate the Ste5–Ste11 interaction. Overall these two evolutionarily conserved modules interact with each other through a unique interface, and thus in the pheromone pathway the structural context of the RBL domain contribution to kinase activation has been shifted through a change of its interaction partner from Ras to a PH domain.  相似文献   
44.
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure–volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψleaf) by increasing turgor at low Ψleaf. We measured leaf hydraulic conductance (Kleaf), Kleaf vulnerability [50 and 80% loss of Kleaf (P50 and P80); |Ψleaf| at 50 and 80% loss of Kleaf, respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50, P80 and maximum Kleaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, Kleaf at ?2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment.  相似文献   
45.
Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.  相似文献   
46.
47.
Many plant species grown under in vitro controlled conditions can be used as models for the study of physiological processes. Adult pineapple can display CAM physiology while in vitro it functions as a C3 plant. Ex vitro Ananas comosus has plastic morphology and physiology, both easy to modify from C3 to CAM by changing the environmental conditions. The yield of survival for a rentable propagation protocol of pineapple is closely related with the C3/CAM shift and the associated physiological characteristics. In the present work, ex vitro pineapple plants were divided in two sets and subjected to C3 and CAM-inducing environmental conditions, determined by light intensity and relative humidity, respectively, 40 μmol m−2 s−1/85% and 260 μmol m−2 s−1/50%. The results demonstrated that the stress imposed by the environmental conditions switched pineapple plants from C3 to CAM behavior. Comparing to CAM induced, C3-induced pineapple plants showed substandard growth parameters and morphological leaf characteristics but a better rooting process and a higher ABA production, a phenotype closer to adult plants, which are expected to produce fruits in a normal production cycle. We conclude that the upholding of these characteristics is conditioned by low light intensity plus high relative humidity, especially during the first 8 weeks of ex vitro growth. It is expected that the better understanding of pineapple acclimatization will contribute to the design of a protocol to apply as a rentable tool in the pineapple agronomic industry.  相似文献   
48.
Chrysosporium species were isolated from soil and keratinized material. Primary isolation was performed following the general method of hair baiting on modified Czapek-agar media with washed, defated and sterilized human hair fragments added. Strains were maintained in test tubes of potato dextrose agar at 29 degrees C and cultivated on phytone yeast extract agar at 28 degrees C for 14 days for identification. Isolates were characterized using Van Oorschot's key. Keratinolytic activity was expressed following a subjective scale representing degree/severity of attack upon hair surface and presence of fungal structures observed in substrate. Culture results and characterization methods were effective for soil Chrysosporium strain isolation. A new hair attack mode is described. Of 71 keratinolytic fungal isolates, eight (12%) Chrysosporium species were identified. One keratinolytic Chrysosporium sp. isolate is yet to be identified.  相似文献   
49.
The positive and reliable effect of temporary immersion systems on in vitroshoot proliferation was already proved for different plant genera and it is now presented as an alternative for plantain micropropagation. Some culture parameters affecting the efficiency of the twin flasks system or temporary immersion bioreactor (Escalona et al., 1999) were investigated. Three different cytokinins (benzyladenine, thidiazuron and meta-topolin) were added to the culture medium and meta-topolin at a concentration of 4.4 M was proved to be the most efficient. Successive subcultures (28 days per subculture) were performed on medium supplemented with meta-topolin, revealing a decrease in multiplication after the 6th subculture. Multiplication rate was not changed within the ranges of immersion times (4, 12 or 22 min) and frequencies (every 3, 5 or 7 h) tested. The size of the bioreactor (250, 1,000, 5,000 or 10,000 ml) and the volume of medium per inoculum (10, 20 or 30 ml) were also evaluated and appeared to have an influence on the multiplication. A proportion of 25–100 ml of headspace per inoculum and 30 ml of medium per inoculum resulted in a multiplication rate > 13 in 28 days.  相似文献   
50.
Onchocerciasis is a chronic filarial infection transmitted by Simulium flies that has a focal geographical distribution in Latin America. The southern Venezuelan focus has a gradient of endemicity that includes the largest number of hyperendemic communities in the continent, many of them in remote forest and mountainous areas, where it is an important public health problem among the Yanomami indigenous population. The recent introduction of Geographical Information Systems (GIS) tools and a landscape epidemiology approach for study of vector borne diseases is helping to understand relationships between environment and transmission dynamics of onchocerciasis. Striking differences in the transmission dynamics of onchocerciasis between different river courses were detected. A significant relationship between onchocerciasis and temperature was also demonstrated. The geologic substrate, kind of landscape and vegetation seemed also to influence the transmission of onchocerciasis. In the Venezuelan Amazon, different kinds of landscapes associated with distinctive vector species, show different intensities of transmission of onchocerciasis. In this sense, landscape analysis aided by GIS, may prove to be a useful tool for better identification of the spatial distribution of onchocerciasis risk in the Orinoco basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号