首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   6篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有82条查询结果,搜索用时 296 毫秒
11.
12.
The Mersin Mélange, a sedimentary complex in southern Turkey, includes blocks of various origins within a Late Cretaceous matrix. Two blocks in the Mersin Mélange are herein recognized to be of Carboniferous age. One block (the Kozan Block) is composed of alternating chert and mudstone, and includes radiolarian and conodont assemblages revealing a late Tournaisian (Early Mississippian) age. The other (Keven-West Block) consists of platform carbonate containing abundant foraminifera indicating Bashkirian (Early Pennsylvanian) age. These dates are so far the oldest obtained from the blocks within the Mersin Mélange. A correlation of the lithostratigraphies of blocks in the Mersin Mélange with the coeval Tauride sequences indicates that they correspond to the successions in the Beysehir-Hoyran Nappes. In these nappes, the late Tournaisian is characterized by radiolarian rich chert and mudstone of an open marine environment, whereas the Bashkirian succession represents a shallow water environment with Foraminifera-bearing limestone. The Tournaisian deepening can be ascribed to the opening of a deep marginal basin to the north of the Tauride Platform and uplifting of the northern Tauride-Anatolide Platform margin during the Late Mississippian and Early Pennsylvanian.A shallowing upward sequence started in the Tournaisian with a pelagic sequence followed by platform carbonates of Bashkirian age in the Beysehir-Hoyran Nappes, and could be related to a major glaciation event during late Visean–Serpukhovian resulting in a sea-level drop and deposition of platform carbonates in the Bashkirian. Given the stratigraphic properties of northerly originated nappe packages (Cataloturan, Hadim and Bolkardag) and parautochthonous/autochthonous sequences in Taurides, sedimentation on the Tauride-Anatolide Platform mainly terminated after the Moscovian, except in the Hadim Nappe with sedimentation in a very shallow sea conditions until the end of the Permian. A depositional break corresponding to the Kasimovian–Wordian time interval in these sequences in the Tauride-Anatolide Platform could be related to the effects of both late Paleozoic Gondwanan glaciation and a possible mantle plume occurrence evidenced by the geochemistry of lavas in the Mersin Mélange causing major uplift in the Northern NeoTehys Ocean. However; at the center of the plume, pelagic sequences (e.g., ribbon chert and pelagic limestone) were deposited associated with these lavas due to a progressive developing rift system during the Permian, based on previous studies.  相似文献   
13.
14.
Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by marine "red tide" dinoflagellates and several species of freshwater filamentous cyanobacteria, including Anabaena circinalis, Aphanizomenon spp., Lyngbya wollei, and Cylindrospermopsis raciborskii. A specific quantitative PCR (qPCR) method based on SYBR green chemistry was developed to quantify saxitoxin-producing Anabaena circinalis cyanobacteria, which are major bloom-forming freshwater cyanobacteria. The aim of this study was to infer the potential toxigenicity of samples by determining the copy number of a unique and unusual polyketide synthase (PKS) sequence (sxtA) in the STX biosynthesis gene cluster identified in cyanobacteria. Our qPCR approach was applied to water samples collected from different Australian lakes, dams, and rivers. The STX concentration and cyanobacterial cell density of these blooms were also determined by high-pressure liquid chromatography (HPLC) and microscopic cell counting, respectively. STX concentrations correlated positively with STX gene copy numbers, indicating that the latter can be used as a measure of potential toxigenicity in Anabaena circinalis and possibly other cyanobacterial blooms. The qPCR method targeting STX genes can also be employed for both monitoring and ecophysiological studies of toxic Anabaena circinalis blooms and potentially several other STX-producing cyanobacteria.  相似文献   
15.
16.
17.
18.
The CXC chemokine ligand (CXCL)10 is induced locally in the CNS in diverse pathologic states. The impact of CXCL10 production in the CNS was examined in transgenic mice with astrocyte-directed production of this chemokine. These glial fibrillary acidic protein (GF)-CXCL10 transgenic mice spontaneously developed transgene dose- and age-related leukocyte infiltrates in perivascular, meningeal, and ventricular regions of the brain that were composed of, surprisingly, mainly neutrophils and, to a lesser extent, T cells. No other overt pathologic or physical changes were evident. In addition, the cerebral expression of a number of inflammation-related genes (e.g., cytokines) was not significantly altered in the transgenic mice. The extent of leukocyte recruitment to the brain could be enhanced markedly by peripheral immunization of GF-CXCL10 mice with CFA and pertussis toxin. This was paralleled by a modest, transient increase in the expression of some cytokine and chemokine genes. Analysis of the expression of the CXCL10 receptor, CXCR3, by the brain-infiltrating leukocytes from immunized GF-CXCL10 transgenic mice revealed a significant enrichment for CXCR3-positive cells in the CNS compared with spleen. The majority of cells positive for CXCR3 coexpressed CD3, whereas Gr1-positive granulocytes were negative for CXCR3 expression. Thus, while astrocyte production of CXCL10 can promote spontaneous and potentiate immune-induced recruitment of leukocytes to the CNS, this is not associated with activation of a degenerative immune pathology. Finally, the accumulation of neutrophils in the brain of GF-CXCL10 transgenic mice is apparently independent of CXCR3 and involves an unknown mechanism.  相似文献   
19.
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号