首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34005篇
  免费   15919篇
  国内免费   6篇
  49930篇
  2024年   10篇
  2023年   38篇
  2022年   214篇
  2021年   561篇
  2020年   2266篇
  2019年   3810篇
  2018年   3972篇
  2017年   4234篇
  2016年   4298篇
  2015年   4425篇
  2014年   4080篇
  2013年   4587篇
  2012年   2525篇
  2011年   2124篇
  2010年   3424篇
  2009年   2149篇
  2008年   1178篇
  2007年   815篇
  2006年   718篇
  2005年   701篇
  2004年   671篇
  2003年   604篇
  2002年   549篇
  2001年   504篇
  2000年   413篇
  1999年   294篇
  1998年   79篇
  1997年   63篇
  1996年   39篇
  1995年   41篇
  1994年   29篇
  1993年   28篇
  1992年   46篇
  1991年   54篇
  1990年   41篇
  1989年   48篇
  1988年   37篇
  1987年   26篇
  1986年   26篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
901.
Understanding animal foraging ecology requires large sample sizes spanning broad environmental and temporal gradients. For pollinators, this has been hampered by the laborious nature of morphologically identifying pollen. Identifying pollen from urban environments is particularly difficult due to the presence of diverse ornamental species associated with consumer horticulture. Metagenetic pollen analysis represents a potential solution to this issue. Building upon prior laboratory and bioinformatic methods, we applied quantitative multilocus metabarcoding to characterize the foraging ecology of honeybee colonies situated in urban, suburban, mixed suburban–agricultural and rural agricultural sites in central Ohio, USA. In cross‐validating a subset of our metabarcoding results using microscopic palynology, we find strong concordance between the molecular and microscopic methods. Our results suggest that forage from the agricultural site exhibited decreased taxonomic diversity and temporal turnover relative to the urban and suburban sites, though the generalization of this observation will require replication across additional sites and cities. Our work demonstrates the power of honeybees as environmental samplers of floral community composition at large spatial scales, aiding in the distinction of taxa characteristically associated with urban or agricultural land use from those distributed ubiquitously across the sampled landscapes. Observed patterns of high forage diversity and compositional turnover in our more urban sites are likely reflective of the fine‐grain heterogeneity and high beta diversity of urban floral landscapes at the scale of honeybee foraging. This provides guidance for future studies investigating how relationships between urbanization and measures of pollinator health are mediated by variation in floral resource dynamics across landscapes.  相似文献   
902.
Bio3D is a family of R packages for the analysis of biomolecular sequence, structure, and dynamics. Major functionality includes biomolecular database searching and retrieval, sequence and structure conservation analysis, ensemble normal mode analysis, protein structure and correlation network analysis, principal component, and related multivariate analysis methods. Here, we review recent package developments, including a new underlying segregation into separate packages for distinct analysis, and introduce a new method for structure analysis named ensemble difference distance matrix analysis (eDDM). The eDDM approach calculates and compares atomic distance matrices across large sets of homologous atomic structures to help identify the residue wise determinants underlying specific functional processes. An eDDM workflow is detailed along with an example application to a large protein family. As a new member of the Bio3D family, the Bio3D‐eddm package supports both experimental and theoretical simulation‐generated structures, is integrated with other methods for dissecting sequence‐structure–function relationships, and can be used in a highly automated and reproducible manner. Bio3D is distributed as an integrated set of platform independent open source R packages available from: http://thegrantlab.org/bio3d/ .  相似文献   
903.
904.
905.
Each year 25–75% of banana and plantain yields are lost because of rhizome damages caused by banana weevil (Cosmopolites sordidus) in growing regions of sub‐Saharan Africa. However, the specific plant defence response of the rhizome tissue in relation to the C. sordidus attack is unknown. Consequently, in this study, we evaluated whether plant defence substances in the rhizome are correlated with the degree of larval damage and whether applications of methyl jasmonate (MJ) elicit a greater induction of the plant defence potential against C. sordidus. Moreover, we attempted to reveal cellular modifications in response to the root feeding herbivore through histochemical staining. The banana cultivars “Km5” and “Mbwazirume” with tolerance and susceptibility to C. sordidus, respectively, were used in a pot experiment to evaluate percent rhizome damage, leaf chlorophyll content, total phenolic content (TPC), antioxidant capacity and cell morphology in response to C. sordidus attack and/or MJ applications compared to untreated control plants. We found that C. sordidus‐induced rhizome damage was 30% in the susceptible cultivar but less than 5% in the tolerant cultivar. The percent rhizome damage was not related to leaf chlorophyll content but showed a significant negative linear relationship to both TPC and antioxidant capacity. Larvae feeding induced a considerably greater increase of polyphenolic defence compounds in Km5 than in Mbwazirume; however, this response was opposite in the MJ treatment, suggesting that the phytohormone induced the susceptible plant to invest more into the synthesis of defence chemicals that in turn lead to reduced C. sordidus damage. Tissue staining demonstrated a greater deposition of lignin and suberin in C. sordidus challenged rhizome, presumably to seal off healthy tissue with a physical barrier from continued pest attack. It is concluded that MJ induces polyphenolics in susceptible Mbwazirume banana that reduced C. sordidus damage.  相似文献   
906.
Firewood and charcoal are used on a daily basis both in rural areas and in cities. This type of energy is produced by one of the most ancient traditional methods, known as coppice, which harvest tree sprouts. There is controversy about its effects on forests: it preserves populations and tree cover of species used, but reduces density, inhibits sexual reproduction and generates genetic erosion. We inquired if it was possible to identify a loss of genetic diversity in oak populations traditionally used for charcoal by the Zongolica Nahuas in Veracruz state, Mexico. We studied populations of Quercus laurina, Quercus calophylla and Quercus rugosa in three different altitudes. Molecular analysis with eight nuclear codominant microsatellites was performed to determine the diversity, structure and gene flow of these species. Results for Q. laurina were Na = 8.458, I = 1.766, Ho = 0.679, polymorphism = 100%, Fis = 0.079, with intraindividual variation of 81.55%. For Q. calophylla: Na = 7.250, I = 1.563, Ho = 0.646, polymorphism = 91.67%, Fis = 0.083, with intraindividual variation of 83.80%. For Q. rugosa: Na = 6.958, I = 1.510, Ho = 0.574, polymorphism = 91.67%, Fis = 0.204, with intraindividual variation of 81.99%; this species shows signals of an early genetic isolation process. Our findings indicate that Quercus genetic diversity for the three species is high and comparable with oak species in Mexico and worldwide. We conclude that at the present, coppice is preserving a historical diversity in adult trees kept alive through sprouting. Nonetheless, problems with coppice systems elsewhere, unregulated harvesting and expansion of pine plantation in the region suggest that further studies, hand in hand with a landscape management approach that improve charcoal and firewood production, may be valuable for Sierra de Zongolica genetic biodiversity conservation.  相似文献   
907.
The successful development of parasitoids of herbivores depends on the quality of their host, which is often affected by the host plant. Therefore, a parasitoid’s oviposition decisions will directly depend on the host, but also on plant quality. Here, we investigated the direct effects of host species and the indirect effects of the host’s food plant on the oviposition decisions and performance of the gregarious ectoparasitoid Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae). With a series of no‐choice experiments, we determined the oviposition and performance of the parasitoid on: (1) two caterpillar species, fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and velvet armyworm, Spodoptera latifascia Walker, reared on maize (Zea mays L., Poaceae), (2) the same caterpillars reared on maize, bean (Phaseolus vulgaris L., Fabaceae), or squash (Cucurbita pepo L., Cucurbitaceae) leaves, and (3) S. latifascia caterpillars reared on leaves of wild and cultivated lima bean, Phaseolus lunatus L. All these insects and plants originate from Mesoamerica where they have coexisted for thousands of years in the traditional agricultural system known as Milpa in which maize, beans, and squash are planted together. We found that the preferred and best combination of host and host plant for parasitoid performance was S. frugiperda on maize. Parasitoids laid larger clutches, had higher survival, and more females and larger adults emerged from S. frugiperda reared on maize. However, when both caterpillar species were reared on squash, S. latifascia was the better host. Contrary to the literature, S. frugiperda was not able to develop on bean plants. Results from the lima bean experiment showed that parasitoid performance was best when S. latifascia was reared on leaves of cultivated compared to wild lima bean. These findings are discussed in the context of mixed cropping in which the ability of generalist parasitoids to switch among hosts and host plant species could be advantageous for pest management.  相似文献   
908.
For autogenic ecosystem engineers, body size is an aspect of individual performance that has direct connections to community structure; yet the complex morphology of these species can make it difficult to draw clear connections between the environment and performance. We combined laboratory experiments and field surveys to test the hypothesis that individual body size was determined by disparate localized physiological responses to environmental conditions across the complex thallus of the intertidal kelp Hedophyllum sessile, a canopy‐forming physical ecosystem engineer. We documented substantial (> 40%) declines in whole‐thallus photosynthetic potential (as Maximum Quantum Yield, MQY) as a consequence of emersion, which were related to greater than 10‐fold increases in intra‐thallus MQY variability (as Coefficient of Variation). In laboratory experiments, desiccation and high light levels during emersion led to lasting impairment of photosynthetic potential and an immediate > 25% reduction in area due to tissue contraction, which was followed by complete loss of structural integrity after three days of submersion. Tissue exposed to desiccation and high light during emersion had higher nitrogen concentrations and lower phlorotannin concentrations than tissue in control treatments (on average 1.36 and 0.1x controls, respectively), suggesting that conditions during emersion have the potential to affect food quality for consumers. Our data indicate that the complex thallus morphology of H. sessile may be critical to this kelp’s ability to persist in the intertidal zone despite the physiological challenges of emersion and encourage a more nuanced view of the concept of “sub‐lethal stress” on the scale of the whole individual.  相似文献   
909.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号