首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   14篇
  270篇
  2024年   1篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   15篇
  2013年   17篇
  2012年   23篇
  2011年   31篇
  2010年   20篇
  2009年   19篇
  2008年   21篇
  2007年   12篇
  2006年   19篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   3篇
排序方式: 共有270条查询结果,搜索用时 0 毫秒
181.
Isofucosterol is a major 4-demethylsterol which has an ethylidene group at C-24 in Arabidopsis thaliana. To evaluate the presence of brassinosteroids (BRs) with the same carbon skeleton as that of isofucosterol, a large quantity of A. thaliana was extracted and purified. GC-MS/selected ion monitoring analysis verified that 6-deoxohomodolichosterone and homodolichosterone are present in Arabidopsis. An enzyme solution prepared from wild type Arabidopsis successfully mediated conversion of 6-deoxohomodolichosterone to homodolichosterone. However, a double mutant cyp85a1/cyp85a2 could not catalyze the conversion, implying that in A. thaliana the C-6 oxidation of 6-deoxohomodolichosterone to homodolichosterone seems to be catalyzed by CYP85A1 and/or CYP85A2. In yeast, both heterologously expressed CYP85A1 and CYP85A2 catalyzed the C-6 oxidation of 6- deoxohomodolichosterone to homodolichosterone, but the conversion rate in CYP85A2/V60/WAT21 was significantly higher than that in CYP85A1/V60/WAT21, indicating that C-6 oxidation of 6-deoxohomodolichosterone to homodolichosterone is mainly catalyzed by CYP85A2 in A. thaliana. Taken together, this study strongly suggests that a biosynthetic pathway for the production of 6-deoxohomodolichosterone and homodolichosterone is functional, and CYP85As have important roles in 24-ethylidene biosynthesis in A. thaliana.  相似文献   
182.
Development of a novel bioreactor system for treatment of gaseous benzene   总被引:1,自引:0,他引:1  
A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational, and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column; the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor; the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Finally, two experiments were conducted to show the feasibility of this system. Based on an aqueous bioreactor volume of 1 L, when the inlet gas flow and gaseous benzene concentration were 120 L/h and 4.2 mg/L, respectively, the benzene removal efficiency was 75% at steady state. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants, and represents an alternative to the use of biofilters.  相似文献   
183.
MicroRNA genes are transcribed by RNA polymerase II   总被引:68,自引:0,他引:68  
Lee Y  Kim M  Han J  Yeom KH  Lee S  Baek SH  Kim VN 《The EMBO journal》2004,23(20):4051-4060
  相似文献   
184.
Recent introduction of a learning algorithm for cDNA microarray analysis has permitted to select feature set to accurately distinguish human cancers according to their pathological judgments. Here, we demonstrate that hepatitis B virus-positive hepatocellular carcinoma (HCC) could successfully be identified from non-tumor liver tissues by supervised learning analysis of gene expression profiling. Through learning and cross-validating HCC sample set, we could identify an optimized set of 44 genes to discriminate the status of HCC from non-tumor liver tissues. In an analysis of other blind-tested HCC sample sets, this feature set was found to be statistically significant, indicating the reproducibility of our molecular discrimination approach with the defined genes. One prominent finding was an asymmetrical distribution pattern of expression profiling in HCC, in which the number of down-regulated genes was greater than that of up-regulated genes. In conclusion, the present findings indicate that application of learning algorithm to HCC may establish a reliable feature set of genes to be useful for therapeutic target of HCC, and that the asymmetric expression pattern may emphasize the importance of suppressed genes in HCC.  相似文献   
185.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.  相似文献   
186.

Purpose

We examined whether resistance exercise training restores impaired autophagy functions caused by Chloroquine (CQ)-induced Sporadic Inclusion Body Myositis (sIBM) in rat skeletal muscle.

Methods

Male wistar rats were randomly assigned into three groups: Sham (n = 6), CQ (n = 6), and CQ + Exercise (CE, n = 6). To create a rat model of sIBM, rats in the CQ and CE group were intraperitoneally injected with CQ 5 days a week for 16 weeks. Rats in the CE group performed resistance exercise training 3 times a week for 8 weeks in conjunction with CQ starting from week 9 to week 16. During the training period, maximal carrying load, body weight, muscle weight, and relative muscle weight were measured. Autophagy responses were examined by measuring specific markers.

Results

While maximal carrying capacity for resistance exercise training was dramatically increased in the CE group, no significant changes occurred in the skeletal muscle weight as well as in the relative muscle weight of CE compared to the other groups. CQ treatment caused significant increases in the levels of Beclin-1 and p62, and decreases in the levels of LAMP-2 proteins. Interestingly, no significant differences in the LC3-II/I ratio or the LC3-II protein levels were observed. Although CQ-treatment groups suppressed the levels of the potent autophagy inducer, BNIP3, p62 levels were decreased in only the CE group.

Conclusion

Our findings demonstrate that sIBM induced by CQ treatment results in muscle degeneration via impaired autophagy and that resistance exercise training improves movable loading activity. Finally, regular exercise training may provide protection against sIBM by enhancing the autophagy flux through p62 protein.  相似文献   
187.
The role of brassinosteroids (BRs) in hyponastic growth induced by submergence was investigated in Arabidopsis thaliana. Under flooding conditions, exogenously applied BRs increased hyponastic growth of rosette leaves. This hyponastic growth was reduced in a BR insensitive mutant (bri1-5), while it was increased in a BR dominant mutant (bes1-D). Further, expression of hypoxia marker genes, HRE1 and HRE2, was elevated in submerged bes1-D. These results indicate that BRs exert a positive action on hyponastic growth of submerged Arabidopsis leaves. Expression of ethylene biosynthetic genes, such as ACS6, ACS8 and ACO1, which are up-regulated by submergence, was also activated by application of BRs and in bes1-D. The enhanced hyponastic growth in submerged bes1-D was significantly reduced by application of cobalt ion, suggesting that BRs control hyponastic growth via ethylene, which seems to be synthesized by ACO6 and ACO8 followed by ACO1 in submerged leaves. A double mutant, bes1-Dxaco1-1, showed hyponastic growth activity similar to that seen in aco1-1, demonstrating that the BR signaling for regulation of hyponastic growth seems to be an upstream event in ethylene-induced hyponastic growth under submergence in Arabidopsis.  相似文献   
188.
In this study, several methods were devised and evaluated to enhance biodiesel production by whole cells immobilized onto the polyurethane foam coated with activated carbon. Biodiesel conversion was increased to 76.4% with the increase in the number of polyurethane foam until it occupied 18.0 or 2.4% of reaction mixture based on apparent or actual volume of supports, respectively. Stepwise methanol addition to prevent methanol inhibition on the immobilized whole cells was optimized in terms of number of aliquot and feeding interval. When 4.5 molar ratio of methanol to soybean oil was divided into 4 equal aliquots and each aliquot was fed to the reaction mixture every 24 h, the highest final biodiesel conversion of 82.4% was achieved. Chemical treatment of the immobilized cells with 0.1% of chloroform for 2 h enhanced biodiesel conversion to 90.5%. The initial addition of 5% glycerol in the fresh reaction mixture increased biodiesel conversion to 90.3% while the removal of glycerol during biodiesel production barely increased biodiesel conversion. The biodiesel conversion was increased with the increase of initial water content in the fresh reaction mixture and the highest value was 92.7% at 3.0% of water content, but decreased thereafter. The effects of co-addition of glycerol and water on biodiesel production were also investigated, and the co-addition of 3.125% of glycerol and 1.875% of water relative to soybean oil substantially increased biodiesel conversion to 95.0%. By these optimization of reaction conditions and co-adding glycerol and water, initial biodiesel production rate and final biodiesel conversion were remarkably enhanced by 26.8 and 24.1%, respectively.  相似文献   
189.
190.
Facile control over the morphology of phase pure tin monosulfide (SnS) thin films, a promising future absorber for thin film solar cells, is enabled by controlling the growth kinetics in vapor transport deposition of congruently evaporated SnS. The pressure during growth is found to be a key factor in modifying the final shape of the SnS grains. The optimized cube‐like SnS shows p‐type with the apparent carrier concentration of ≈1017 cm?3 with an optical bandgap of 1.32 eV. The dense and flat surface morphology of 1 µm thick SnS combined with the minimization of pinholes directly leads to improved diode quality and increased shunt resistance of the SnS/CdS heterojunction (cell area of 0.30 cm2). An open‐circuit voltage of up to 0.3068 V is achieved, which is independently characterized at the Korea Institute of Energy Research (KIER). Detailed high‐resolution transmission electron microscopy analysis confirms the absence of detrimental secondary phases such as Sn2S3 or SnS2 in the SnS grains or at intergrain boundaries. The initial efficiency level of 98.5% is maintained even after six months of storage in air, and the final efficiency of the champion SnS/CdS cell, certified at the KIER, is 2.938% with an open‐circuit voltage of 0.2912 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号