全文获取类型
收费全文 | 33944篇 |
免费 | 3055篇 |
国内免费 | 2476篇 |
专业分类
39475篇 |
出版年
2024年 | 89篇 |
2023年 | 418篇 |
2022年 | 813篇 |
2021年 | 1328篇 |
2020年 | 963篇 |
2019年 | 1181篇 |
2018年 | 1158篇 |
2017年 | 797篇 |
2016年 | 1194篇 |
2015年 | 2022篇 |
2014年 | 2247篇 |
2013年 | 2493篇 |
2012年 | 3037篇 |
2011年 | 2831篇 |
2010年 | 1691篇 |
2009年 | 1506篇 |
2008年 | 1833篇 |
2007年 | 1645篇 |
2006年 | 1505篇 |
2005年 | 1238篇 |
2004年 | 1155篇 |
2003年 | 985篇 |
2002年 | 892篇 |
2001年 | 719篇 |
2000年 | 657篇 |
1999年 | 586篇 |
1998年 | 326篇 |
1997年 | 314篇 |
1996年 | 297篇 |
1995年 | 248篇 |
1994年 | 265篇 |
1993年 | 180篇 |
1992年 | 320篇 |
1991年 | 295篇 |
1990年 | 246篇 |
1989年 | 229篇 |
1988年 | 192篇 |
1987年 | 156篇 |
1986年 | 146篇 |
1985年 | 151篇 |
1984年 | 142篇 |
1983年 | 103篇 |
1982年 | 90篇 |
1980年 | 59篇 |
1979年 | 75篇 |
1978年 | 69篇 |
1977年 | 58篇 |
1976年 | 67篇 |
1975年 | 63篇 |
1974年 | 75篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The androgen receptor from mouse kidney cytosol has been studied for its nucleic acid binding properties by DNA-cellulose centrifugation assay. The receptor appears to bind to RNA (mRNA, tRNA, rRNA) as well as to DNA. Salt and heat activation of the androgen receptor enhances both DNA and RNA binding. The receptor binds slightly better to denatured DNA than to native DNA. The androgen receptor binds about 2-fold tighter to poly(dG-dC) than to poly (dA-dT). The interaction of the receptor with DNA is not greatly affected by the BrdUrd substitution. The observation that androgen receptor shows a significant affinity to RNA may imply that androgen receptor-RNA interaction could play a role in gene regulation. 相似文献
62.
A simple photolithographic technique has been developed which can be used to produce microscopic grid patterns on glass coverslips. The grid pattern is first photo-reduced onto film, and the resulting photographic negative is then used as a mask. A glass slide or coverslip, coated with a layer of photoresist, is then exposed to tungsten light through the mask. After developing and etching, the grid pattern is transferred permanently onto glass. This simple and rapid procedure allows one to mass-produce very small, high resolution grids which are useful for monitoring individual microinjected cells or chromosomal spreads under the microscope. 相似文献
63.
64.
We have used a stopped flow rapid reaction pH apparatus to investigate the carbamate equilibrium in glycylglycine solutions and in three biological tissues, human plasma, sheep muscle, and sheep brain, as well as to investigate the kinetics of carbamate formation in glyclyglycine solution and in human plasma. The rapid reaction apparatus was equipped with a pH sensitive glass electrode in order to follow the time course of pH from 0.005 to 100 s after rapid mixing of a solution of amine or protein and CO2. Two phases of the pH curve were observed: a fast phase representing carbamate formation, and a slow phase due to the hydration of CO2 which was uncatalyzed since a carbonic anhydrase inhibitor was added to the biological solutions. From the time course of pH change during the fast phase K2, the R-NH2 ionization constant, and Kc, the carbamate equilibrium constant as well as the velocity constant for the formation of carbamate, ka could be calculated from data at different pH and pCO2. The carbamate formed in glycylglycine solutions over a wide range of pH and pCO2 was found consistent with the theory of carbamate formation and with published data. At ionic strength 0.16 and 37 degrees pK is 7.67. pKc 4.58. The heat of the carbamate reaction (deltaH) was calculated to be -3.2 kcal/mol between 20 degrees and 37 degrees. Kt of glycylglycine depends quantitatively on ionic strength as predicted by the Debye-Huckel theory. With ionic strength 0.16 ku was found to be 2,500 M1 S1 at 37 degrees. The activation energy of carbamate formation is 6.7 kcal/mol. Carbamate measurements in human plasma at pCO2 from 38 to 359 Torr. pH from 6.9 to 8.3, temperature 37 degrees, and ionic strength 0.15 provided evidence that two kinds of amino groups participate in carbamate formation. From the equilibrium constants computed for the two species they could be identified as alpha- and epsilon-amino groups. On the basis of a protein molecular weight of 69.000. 0.6 alpha-amino groups/molecule with pKz=7.0 and pKc=4.2, and 5.9 epsilon-amino groups/molecule with pKz=9.0 and pKc=4.3 contribute to carbamate formation. The velocity constant ka was estimated to be 4,950 M1 S1 for the alpha-amino groups and 13,800 M1 S1 for the epsilon-amino groups. Under physiological conditions (pCO2=40 Torr. pH=7.4). The concentration of carbamate in plasma is 0.6 mM and the half-time of carbamate formation is 0.05 s. In extracts prepared from sheep brain at 37 degrees pH=7 and pCO2=35 Torr. the carbamate formation was estimated to be 0.8 mM. With pCO2=70 Torr and the same pH and temperature the carbamate concentration in muscle approximates 0.3 mM and increases to 7 mM as pH rises to 8. It is concluded that, as in plasma, a considerable number of epsilon-amino groups appear to be available for carbamate formation in these tissues. 相似文献
65.
66.
67.
A temperature-dependent conformational change of the active DPN-linked isocitrate dehydrogenase was observed. When initial reaction kinetic data were examined between 35 and 5 degrees, the Hill number (n) varied from 2 at higher to n approaching unity at lower temperatures, with an inflection point at 17 degrees. The presence of manganous isocitrate in the incubation media shifted the transition temperature for enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoate) from 8-16 degrees. These temperature-dependent transitions were paralleled by progressive changes in sedimentation velocities from s20, w of 10.4 at 25 degrees to 7.3 at 10 degrees as measured by active band centrifugation. The linear Arrhenius plot for apparent V max and the constancy of S0.5 for the substrate manganous isocitrate between 35 and 5 degrees suggest that this temperature-dependent conformational change may not be solely related to manganous isocitrate. Further indications of equilibria between different species of enzyme in solution and effects of substrates and cofactors on conformation came from studies of specific activity of enzyme diluted into buffers at 3 and 25 degrees. Dilution to concentrations between 10 and 25 mum enzyme resulted in relatively rapid protein concentration-dependent inactivation which could be prevented and fully reversed by manganous isocitrate. No further substantial inactivation was found subsequent to this phase at 25 degrees. Lowering the temperature of the dilution buffer to 3 degrees favored formation of enzyme species exhibiting a further time and pH-dependent loss of activity which became independent of protein concentration below 7 mum enzyme. The rate of cold inactivation was reduced by raising the ionic strength of the buffer and its progress could be arrested by manganous isocitrate; however, the substrate did not restore the original activity. 相似文献
68.
69.
Bingqing Xia Xurui Shen Yang He Xiaoyan Pan Feng-Liang Liu Yi Wang Feipu Yang Sui Fang Yan Wu Zilei Duan Xiaoli Zuo Zhuqing Xie Xiangrui Jiang Ling Xu Hao Chi Shuangqu Li Qian Meng Hu Zhou Yubo Zhou Xi Cheng Xiaoming Xin Lin Jin Hai-Lin Zhang Dan-Dan Yu Ming-Hua Li Xiao-Li Feng Jiekai Chen Hualiang Jiang Gengfu Xiao Yong-Tang Zheng Lei-Ke Zhang Jingshan Shen Jia Li Zhaobing Gao 《Cell research》2021,31(8):847-860
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology 相似文献
70.
Lin Zhang Yiming Chen Fahui Li Lihui Zhang Jinhong Feng Lei Zhang 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):1918
Histone deacetylases (HDACs) are validated targets for the development of anticancer drugs in epigenetics. In the discovery of novel HDAC inhibitors with anticancer potency, the 5-chloro-4-((substituted phenyl)amino)pyrimidine fragment is assembled as a cap group into the structure of HDAC inhibitors. The SAR revealed that presence of small groups (such as methoxy substitution) is beneficial for the HDAC inhibitory activity. In the enzyme inhibitory selectivity test, compound L20 exhibited class I selectivity with IC50 values of 0.684 µM (selectivity index of >1462), 2.548 µM (selectivity index of >392), and 0.217 µM (selectivity index of >4608) against HDAC1, HDAC2 and HDAC3 compared with potency against HDAC6 (IC50 value of >1000 µM), respectively. In the antiproliferative assay, compound L20 showed both hematological and solid cancer inhibitory activities. In the flow cytometry, L20 promoted G0/G1 phase cell cycle arrest and apoptosis of K562 cells. 相似文献