首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30818篇
  免费   2317篇
  国内免费   1595篇
  2024年   65篇
  2023年   357篇
  2022年   846篇
  2021年   1433篇
  2020年   976篇
  2019年   1225篇
  2018年   1196篇
  2017年   854篇
  2016年   1279篇
  2015年   1983篇
  2014年   2226篇
  2013年   2404篇
  2012年   2726篇
  2011年   2391篇
  2010年   1535篇
  2009年   1303篇
  2008年   1592篇
  2007年   1411篇
  2006年   1225篇
  2005年   1038篇
  2004年   842篇
  2003年   742篇
  2002年   577篇
  2001年   532篇
  2000年   420篇
  1999年   439篇
  1998年   262篇
  1997年   289篇
  1996年   270篇
  1995年   236篇
  1994年   225篇
  1993年   163篇
  1992年   242篇
  1991年   211篇
  1990年   145篇
  1989年   126篇
  1988年   100篇
  1987年   123篇
  1986年   87篇
  1985年   83篇
  1984年   65篇
  1983年   54篇
  1982年   48篇
  1981年   49篇
  1980年   32篇
  1979年   39篇
  1978年   25篇
  1977年   31篇
  1975年   26篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The sluggish Zn2+ diffusion and high nucleation energy barrier induce uncontrolled growth of Zn dendrites and detrimental parasitic reactions, severely hampering the commercialization of Zn metal anodes (ZMAs). Herein, hollow mesoporous carbon sphere opal with confined Sn/TiO2 clusters (HMCSST) is designed as the host to spatially regulate the Zn deposition. Owing to the capillary effect of the ordered hierarchical porous structure, the mass diffusion can be dramatically accelerated to promote a fast deposition kinetics at the interface between ZMA and electrolyte. Besides, the encapsulated ultrafine Sn/TiO2 clusters serve as zincophilic sites to achieve both the uniform Zn deposition on the hierarchical porous opal host and the high thermodynamic stability of ZMAs. Benefiting from the structural and componential merits, the HMCSST host effectively reduces the activation energy to enable a temporal-spatial ordering of Zn nucleation and growth. As expected, the stable HMCSST-Zn electrode guarantees steady Zn platting/stripping with long-term stability over 1300 h in a symmetrical cell at a depth of discharge of 37.5%. As a proof-of-concept demonstration, an HMCSST-Zn||ammonium vanadate full cell shows a long lifespan over 5000 cycles at 10.0 A g−1 with low polarization.  相似文献   
952.
High power conversion efficiency (PCE), long-term stability, and mechanical robustness are prerequisites for the commercial applications of organic solar cells (OSCs). In this study, a new star-shaped trimer acceptor (TYT-S) is developed and high-performance OSCs with a PCE of 19.0%, high photo-stability (t80% lifetime = 2600 h under 1-sun illumination), and mechanical robustness with a crack-onset strain (COS) of 21.6% are achieved. The isotropic molecular structure of TYT-S affords efficient multi-directional charge transport and high electron mobility. Furthermore, its amorphous structure prevents the formation of brittle crystal-to-crystal interfaces, significantly enhancing the mechanical properties of the OSC. As a result, the TYT-S-based OSCs demonstrate a significantly higher PCE (19.0%) and stretchability (COS = 21.6%) than the linear-shaped trimer acceptor (TYT-L)-based OSCs (PCE = 17.5% and COS = 6.4%) and the small-molecule acceptor (MYT)-based OSCs (PCE = 16.5% and COS = 1.3%). In addition, the increased molecular size of TYT-S, relative to that of MYT and dimer (DYT), suppresses the diffusion kinetics of the acceptor molecules, substantially improving the photostability of the OSCs. Finally, to effectively demonstrate the potential of TYT-S, intrinsically stretchable (IS)-OSCs are constructed. The TYT-S-based IS-OSCs exhibit high device stretchability (strain at PCE80% = 31%) and PCE of 14.4%.  相似文献   
953.
Friction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of Drosophila larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in rut mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of Drosophila larvae to low-friction conditions.  相似文献   
954.
Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal—Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.  相似文献   
955.
Pre‐replication complex (pre‐RC) is critical for DNA replication initiation. CDT1 and MCM2 are the subunits of pre‐RC, and proper regulation of CDT1 and MCM2 are necessary for DNA replication and cell proliferation. The present study aimed to explore the role of CDT1 and MCM2 in oocyte meiotic maturation and early embryonic development. The depletion and overexpression of Cdt1 and Mcm2 in oocyte and zygote were achieved by microinjecting specific siRNA and mRNA to explored their functions in oocyte meiotic maturation and embryonic development. Then, we examined the effect of CDT1 and MCM2 on other signal pathways by immunostaining the expression of related maker genes. We showed that neither depletion nor overexpression of Cdt1 affected oocyte meiotic progressions. The CDT1 was degraded in S phase and remained at a low level in G2 phase of zygote. Exogenous expression of Cdt1 in G2 phase led to embryo attest at zygote stage. Mechanistically, CDT1 overexpression induced DNA re‐replication and thus DNA damage check‐point activation. Protein abundance of MCM2 was stable throughout the cell cycle, and embryos with overexpressed MCM2 could develop to blastocysts normally. Overexpression or depletion of Mcm2 also had no effect on oocyte meiotic maturation. Our results indicate that pre‐RC subunits CDT1 and MCM2 are not involved in oocyte meiotic maturation. In zygote, CDT1 but not MCM2 is the major regulator of DNA replication in a cell cycle dependent manner. Furthermore, its'' degradation is essential for zygotes to prevent from DNA re‐replication in G2 stage.

Pre‐replication complex (pre‐RC) is formed in G1 phase during which CDT1 is localized in nucleus. When zygote enters S phase, CDT1 is degraded and stays at a low level in G2 phase. However, the expression of exogenous Cdt1 mRNA in G2 phase of fertilized egg, mimicking events in which CDT1 degradation is disrupted, pre‐RC reassembles and leads to DNA re‐replication, and thus DNA damage check point activation, which results in embryo arrest at G2/M phase.  相似文献   
956.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for ∼40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a ∼2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.

Introducing a proteobacterial Rubisco with a greater carboxylation rate and a higher content of active sites into tobacco chloroplasts supports photosynthesis and growth at high CO2 concentrations.

IN A NUTSHELL Background: Rubisco is the key enzyme responsible for fixing CO2. However, due to its intrinsically low catalytic turnover rate, Rubisco represents the ultimate rate-limiting step in plant photosynthesis. Improving Rubisco carboxylation and assembly in plants has been a long-standing challenge in crop engineering to meet the pressing need for increased global food production. There is mounting interest in replacing endogenous plant Rubisco with active non-native Rubisco candidates from other organisms to enhance photosynthetic carbon fixation. Question: The folding and assembly of Rubisco in chloroplasts are intricate processes that usually require a series of ancillary factors. Seeking a new Rubisco variant that can be produced in chloroplasts with a high yield and high catalytic performance, without the requirement for cognate assembly factors and activases, could help improve carbon fixation in crop plants. Finding: In this work, we introduced a Rubisco from a proteobacterium into tobacco chloroplasts to replace native tobacco Rubisco. In the proteobacteria, Rubisco is naturally encapsulated at a high density within a CO2-fixing protein organelle, the carboxysome. The foreign Rubisco derived from bacteria formed efficiently and was functional in chloroplasts without the need for exogenous chaperones. Intriguingly, the chloroplast-expressed bacterial Rubisco supported the autotrophic growth of transgenic plants at a similar rate to wild-type plants at 1% CO2. Next Step: The successful production of functional bacterial Rubisco represents a step toward installing faster, highly active Rubisco, functional carboxysomes, and eventually active CO2 concentration mechanisms into chloroplasts to improve Rubisco carboxylation, with the intent of enhancing crop photosynthesis and crop yield on a global scale.  相似文献   
957.
958.
959.
Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, KD = 1.32 μM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3β-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.  相似文献   
960.
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号