首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68542篇
  免费   18742篇
  国内免费   3741篇
  2024年   125篇
  2023年   547篇
  2022年   1145篇
  2021年   2105篇
  2020年   3257篇
  2019年   5001篇
  2018年   5015篇
  2017年   4983篇
  2016年   5463篇
  2015年   6352篇
  2014年   6445篇
  2013年   7207篇
  2012年   5670篇
  2011年   5067篇
  2010年   5173篇
  2009年   3696篇
  2008年   3140篇
  2007年   2522篇
  2006年   2244篇
  2005年   2003篇
  2004年   1861篇
  2003年   1670篇
  2002年   1591篇
  2001年   1234篇
  2000年   1049篇
  1999年   893篇
  1998年   454篇
  1997年   430篇
  1996年   389篇
  1995年   326篇
  1994年   338篇
  1993年   228篇
  1992年   378篇
  1991年   354篇
  1990年   289篇
  1989年   272篇
  1988年   228篇
  1987年   186篇
  1986年   169篇
  1985年   174篇
  1984年   164篇
  1983年   126篇
  1982年   110篇
  1981年   84篇
  1980年   72篇
  1979年   90篇
  1978年   79篇
  1977年   75篇
  1976年   82篇
  1974年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
993.
994.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
995.
Halide perovskite materials have achieved overwhelming success in various optoelectronic applications, especially perovskite solar cells and perovskite‐based light‐emitting diodes (P‐LEDs), owing to their outstanding optical and electric properties. It is widely believed that flat and mirror‐like perovskite films are imperative for achieving high device performance, while the potential of other perovskite morphologies, such as the emerging textured perovskite, is overlooked, which leaves plenty of room for further breakthroughs. Compared to flat and mirror‐like perovskites, textured perovskites with unique structures, e.g., coral‐like, maze‐like, column‐like or quasi‐core@shell assemblies, are more efficient at light harvesting and charge extraction, thus revolutionizing the pathways toward ultrahigh performance in perovskite‐based optoelectronic devices. Employing a textured perovskite morphology, the record of external quantum efficiency for P‐LEDs is demonstrated as 21.6%. In this research news, recent progress in the utilization of textured perovskite is summarized, with the emphasis on the preparation strategies and prominent optoelectronic properties. The impact of the textured morphology on light harvesting, carrier dynamic management, and device performance is highlighted. Finally, the challenges and great potential of employing these innovative morphologies in fabricating more efficient optoelectronic devices, or creating a new energy harvesting and conversion regime are also provided.  相似文献   
996.
997.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
998.
Li[Ni0.9Co0.1]O2 (NC90), Li[Ni0.9Co0.05Mn0.05]O2 (NCM90), and Li[Ni0.9Mn0.1]O2 (NM90) cathodes are synthesized for the development of a Co‐free high‐energy‐density cathode. NM90 maintains better cycling stability than the two Co‐containing cathodes, particularly under harsh cycling conditions (a discharge capacity of 236 mAh g?1 with a capacity retention of 88% when cycled at 4.4 V under 30 °C and 93% retention when cycled at 4.3 V under 60 °C after 100 cycles). The reason for the enhanced stability is mainly the ability of NM90 to absorb the strain associated with the abrupt anisotropic lattice contraction/extraction and to suppress the formation of microcracks, in addition to enhanced chemical stability from the increased presence of stable Mn4+. Although the absence of Co deteriorates the rate capability, this can be overcome as the rate capability of the NM90 approaches that of the NCM90 when cycled at 60 °C. The long‐term cycling stability of NM90 is confirmed in a full cell, demonstrating that it is one of the most promising Co‐free cathodes for high‐energy‐density applications. This study not only provides insight into redefining the role of Mn in a Ni‐rich cathode, it also represents a clear breakthrough in achieving a commercially viable Co‐free Ni‐rich layered cathode.  相似文献   
999.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
1000.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号