首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   17篇
  2024年   1篇
  2023年   10篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   13篇
  2016年   14篇
  2015年   14篇
  2014年   12篇
  2013年   17篇
  2012年   16篇
  2011年   26篇
  2010年   11篇
  2009年   10篇
  2008年   14篇
  2007年   12篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有249条查询结果,搜索用时 32 毫秒
91.
Glutathione S‐transferases (GSTs) are the superfamily of multifunctional detoxification isoenzymes and play important role cellular signaling. The present article focuses on the role of Cd2+, Cu2+, Zn2+, and Ag+ in vitro inhibition of GST. For this purpose, GST was purified from Van Lake fish (Chalcalburnus tarichii Pallas) gills with 110.664 EU mg?1 specific activity and 79.6% yield using GSH‐agarose affinity chromatographic method. The metal ions were tested at various concentrations on in vitro GST activity. IC50 values were found for Cd+2, Cu+2, Zn+2, Ag+ as 450.32, 320.25, 1510.13, and 16.43 μM, respectively. K i constants were calculated as 197.05 ± 105.23, 333.10 ± 152.76, 1670.21 ± 665.43, and 0.433 ± 0.251 μM, respectively. Ag+ showed better inhibitory effect compared with the other metal ions. The inhibition mechanisms of Cd2+ and Cu2+ were non‐competitive, whereas Zn2+ and Ag+ were competitive. Co2+, Cr2+, Pb2+, and Fe3+ had no inhibitory activity on GST.  相似文献   
92.
93.
94.
95.
In the present study, the volatile composition of Ulva rigida (U. rigida) was elucidated by two different methods. As a result of the identification process of volatile components using the GC/MS-FID instrument, 31 compounds were identified by hydrodistillation (HD) method, and 15 compounds were identified by solid-phase microextraction (SPME) method, elucidating the structure of 99.86 % and 92.65 %, respectively. The most abundant compounds in the essential oil of U. rigida were n-hexadecanoic acid and pentadecanal, while the most abundant compound according to the SPME analysis was heptadecyne, a hydrocarbon compound. In the next step, hexane, dichloromethane, chloroform and methanol solvent extracts of U. rigida were prepared and the antimicrobial activities of the extracts and the essential oil obtained by hydro-distillation as well as the scolicidal activities of the solvent extracts were determined. The results of the antimicrobial activity test of the essential oil showed a high level of activity against Bacillus cereus ATCC 10876 and MRSA. The highest activity was found on the microorganism of Pseudomonas aeruginosa ATCC 9027 in chloroform and methanol extracts of U. rigida. Furthermore, viability detection was performed and the scolicidal effects of the extracts on protoscoleces were assessed. The values of lethal concentration doses (LD50, LD75 and LD90) were calculated using probit analysis.  相似文献   
96.
Lactic Acid Production in a Mixed-Culture Biofilm Reactor   总被引:2,自引:0,他引:2       下载免费PDF全文
Novel solid supports, consisting of polypropylene blended with various agricultural materials (pp composite), were evaluated as supports for pure- and mixed-culture continuous lactic acid fermentations in biofilm reactors. Streptomyces viridosporus T7A (ATCC 39115) was used to form a biofilm, and Lactobacillus casei subsp. rhamnosus (ATCC 11443) was used for lactic acid production. For mixed-culture fermentations, a 15-day continuous fermentation of S. viridosporus was performed initially to establish the biofilm. The culture medium was then inoculated with L. casei subsp. rhamnosus. For pure-culture fermentation, L. casei subsp. rhamnosus was inoculated directly into the reactors containing sterile pp composite chips. The biofilm reactors containing various pp composite chips were compared with a biofilm reactor containing pure polypropylene chips and with a reactor containing a suspension culture. Continuous fermentation was started, and each flow rate (0.06 to 1.92 ml/min) was held constant for 24 h; steady state was achieved after 10 h. Lactic acid production was determined throughout the 24-h period by high-performance liquid chromatography. Production rates that were two to five times faster than those of the suspension culture (control) were observed for the pure- and mixed-culture bioreactors. Both lactic acid production rates and lactic acid concentrations in the culture medium were consistently higher in mixed-culture than in pure-culture fermentations. Biofilm formation on the chips was detected at harvest by chip clumping and Gram staining.  相似文献   
97.
Nitric oxide (NO) is known to be produced by macrophages, endothelial cells and neurons and synthesized by an enzyme called nitric oxide synthase (NOS). Various effector mechanisms and infections can affect the NO production. Excessive amount of NO will lead to biochemical reactions, which cause toxic effects. In this study the role of NO has been evaluated in larval toxocarosis, which is a systemic parasite infection caused by T. canis larvae. Infection was established in the Balb/c mice with or without inducible NOS (iNOS) inhibition and the effects of infection and NOS inhibition were observed according to the results of SOD and LPx measurements in brain tissue and NADPH-diaphorase (NADP-d) histochemistry. Results of NADPH-d histochemistry indicate that iNOS inhibition has protective effect on the brains of infected mice and that larval T. canis infection could be related to oxidative stress, and NO production and iNOS inhibition can protect the tissue from damage in this infection.  相似文献   
98.
The relationship between mandibular third molar (M3) angulation and mandibular angle fragility is not well established. The aim of this study was to evaluate the impact of M3 angulation on the mandibular angle fragility when submitted to a trauma to the mandibular body region. A three-dimensional (3D) mandibular model without M3 (Model 0) was obtained by means of finite-element analysis (FEA). Four models were generated from the initial model, representing distoangular (Model D), horizontal (Model H), mesioangular (Model M) and vertical (Model V) angulations. A blunt trauma with a magnitude of 2000 N was applied perpendicularly to the sagittal plane in the mandibular body. Maximum principal stress (Pmax) (tensile stress) values were calculated in the bone. The lowest Pmax stress values were noted in Model 0. When the M3 was present extra stress fields were found around marginal bone of second molar and M3. Comparative analysis of the models with M3 revealed that the highest level of stress was found in Model V, whereas Model D showed the lowest stress values. The angulation of M3 affects the stress levels in the mandibular angle and has an impact on mandibular fragility. The mandibular angle becomes more fragile in case of vertical impaction when submitted to a trauma to the mandibular body region.  相似文献   
99.
Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound‐assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound‐assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value‐added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393–403, 2016  相似文献   
100.
The study objective was to investigate the chemical composition of otoliths of two Lessepsian fish migrants, namely, Champsodon nudivittis and Nemipterus randalli, which thrive in the Iskenderun Bay, Turkey. The study specifically investigated the age structure and explored differences in chemical otolith composition in relation to age. Samples were collected using a traditional Mediterranean bottom trawl (mesh size 44 mm) at depths of 45 to 90 m. A total of 78 Champsodon nudivittis (size range, 6.0 to 14.0 cm) and 60 Nemipterus randalli (size range, 6.1 to 17 cm) were captured in May 2012. Age readings were carried out (sectioning technique). Additionally, the concentrations of Na, K, Li, and Ca were determined using flame photospectrometry. The results revealed that the concentrations of Na (5.70 mg/g) and K (4.45 mg/g) in otoliths of Nemipterus randalli were predominant elements after Ca (128.71 mg/g). The concentration of Li in otoliths was also statistically different in the two species. This study contributes to the knowledge of the otolith chemistry in the two Lessepsian fish species now living in the same (but new) geographical region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号