首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   19篇
  293篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   10篇
  2013年   20篇
  2012年   24篇
  2011年   29篇
  2010年   13篇
  2009年   19篇
  2008年   22篇
  2007年   10篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1987年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有293条查询结果,搜索用时 0 毫秒
51.
We previously identified fs10.1 as a major QTL controlling fruit shape (index of length to width) in an interspecific F2 cross of Capsicum annuum (round fruit) × C. chinense (elongated fruit) in pepper. To more precisely map and characterize the QTL, we constructed near-isogenic lines for fs10.1 and mapped it in a BC4F2 population. In this population, fs10.1 segregated as a Mendelian locus and mapped 0.3 cM away from the closest molecular marker. We further verified the effect of fs10.1 in an F2 population from an independent cross between elongated- and conical-fruited parents. To identify additional allelic variation at fruit shape loci, we screened an EMS-mutagenized population of the blocky-fruited cv. Maor and identified the mutant E-1654 with elongated fruit. This fruit shape mutation was mapped to the fs10.1 region and was determined to be allelic to the QTL. By measuring fruit shape of near-isogenic lines for fs10.1 during fruit development, we found that the shape of the fruit is determined primarily in the first 2 weeks after anthesis. Histological measurements of cell size and cell shape in pericarp sections of fruits of the isogenic lines throughout fruit development indicated that the shape of the fruit is determined primarily by cell shape and that the development of fruit shape is correlated with cell shape.  相似文献   
52.
Tamarixia aguacatensis Yefremova, sp. n. (Hymenoptera: Eulophidae: Tetrastichinae) is described from Mexico as a parasitoid of the avocado psyllid, Trioza aguacate Hollis & Martin (Hemiptera: Triozidae). Trioza aguacate is a serious pest of avocado, Persea americana Miller. A key to the species of Tamarixia Mercet in Mexico is given.  相似文献   
53.
Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated efficient dissection and high quality RNA retrieval from CryoJane preparations. CryoJane technology therefore has the potential to facilitate standardization of laser microdissection slide preparation from frozen tissues.  相似文献   
54.
The species structure of parasitoids (Hymenoptera, Eulophidae) of the invasive lime leafminer Phyllonorycter issikii (Kumata, 1963) (Lepidoptera, Gracillariidae) was reexamined ten years after the latest survey. The work was carried out in 2015 in three previously selected test plots within the city of Izhevsk. Extremely high survival rates (61.7 to 89%) of the leafminer were observed while the parasitoid complex had a negligible impact on its mortality (0.6 to 1.6%). A slight structural transformation of the parasitoid complex was noted, namely a decrease in the number of dominants and a change of the dominant species. In addition, the species structure of the parasitoids collected in 22 populated localities in Udmurtia was studied in 2016. Five new parasitoids of the lime leafminer were found: Pnigalio pectinicornis (Linnaeus, 1758), Sympiesis acalle Walker, 1848, Chrysocharis amanus Walker, 1839, Ch. pentheus Walker, 1839, and Ch. polyzo Walker, 1839. Two species of parasitoids of Ph. issikii were recognized as new to Udmurtia: Pnigalio agraules (Walker, 1839) and Pediobius saulius (Walker, 1839).  相似文献   
55.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   
56.
57.
A thorough understanding of drug metabolism and disposition can aid in the assessment of efficacy and safety. However, analytical methods used in pharmacokinetics (PK) studies of protein therapeutics are usually based on ELISA, and therefore can provide a limited perspective on the quality of the drug in concentration measurements. Individual post-translational modifications (PTMs) of protein therapeutics are rarely considered for PK analysis, partly because it is technically difficult to recover and quantify individual protein variants from biological fluids. Meanwhile, PTMs may be directly linked to variations in drug efficacy and safety, and therefore understanding of clearance and metabolism of biopharmaceutical protein variants during clinical studies is an important consideration. To address such challenges, we developed an affinity-purification procedure followed by peptide mapping with mass spectrometric detection, which can profile multiple quality attributes of therapeutic antibodies recovered from patient sera. The obtained data enable quantitative modeling, which allows for simulation of the PK of different individual PTMs or attribute levels in vivo and thus facilitate the assessment of quality attributes impact in vivo. Such information can contribute to the product quality attribute risk assessment during manufacturing process development and inform appropriate process control strategy.  相似文献   
58.
Pancreatic β-cells secrete insulin in response to metabolic and hormonal signals to maintain glucose homeostasis. Insulin secretion is under the control of ATP-sensitive potassium (KATP) channels that play key roles in setting β-cell membrane potential. Leptin, a hormone secreted by adipocytes, inhibits insulin secretion by increasing KATP channel conductance in β-cells. We investigated the mechanism by which leptin increases KATP channel conductance. We show that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties. This increase results primarily from increased channel trafficking to the plasma membrane rather than reduced endocytosis of surface channels. The effect of leptin on KATP channels is dependent on the protein kinases AMP-activated protein kinase (AMPK) and PKA. Activation of AMPK or PKA mimics and inhibition of AMPK or PKA abrogates the effect of leptin. Leptin activates AMPK directly by increasing AMPK phosphorylation at threonine 172. Activation of PKA leads to increased channel surface expression even in the presence of AMPK inhibitors, suggesting AMPK lies upstream of PKA in the leptin signaling pathway. Leptin signaling also leads to F-actin depolymerization. Stabilization of F-actin pharmacologically occludes, whereas destabilization of F-actin simulates, the effect of leptin on KATP channel trafficking, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane. Our study uncovers the signaling and cellular mechanism by which leptin regulates KATP channel trafficking to modulate β-cell function and insulin secretion.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号