全文获取类型
收费全文 | 249篇 |
免费 | 19篇 |
专业分类
268篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 5篇 |
2017年 | 7篇 |
2016年 | 6篇 |
2015年 | 10篇 |
2014年 | 9篇 |
2013年 | 17篇 |
2012年 | 22篇 |
2011年 | 26篇 |
2010年 | 12篇 |
2009年 | 17篇 |
2008年 | 20篇 |
2007年 | 9篇 |
2006年 | 21篇 |
2005年 | 20篇 |
2004年 | 17篇 |
2003年 | 14篇 |
2002年 | 10篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 1篇 |
排序方式: 共有268条查询结果,搜索用时 15 毫秒
61.
Background
The problem of computationally predicting the secondary structure (or folding) of RNA molecules was first introduced more than thirty years ago and yet continues to be an area of active research and development. The basic RNA-folding problem of finding a maximum cardinality, non-crossing, matching of complimentary nucleotides in an RNA sequence of length n, has an O(n 3)-time dynamic programming solution that is widely applied. It is known that an o(n 3) worst-case time solution is possible, but the published and suggested methods are complex and have not been established to be practical. Significant practical improvements to the original dynamic programming method have been introduced, but they retain the O(n 3) worst-case time bound when n is the only problem-parameter used in the bound. Surprisingly, the most widely-used, general technique to achieve a worst-case (and often practical) speed up of dynamic programming, the Four-Russians technique, has not been previously applied to the RNA-folding problem. This is perhaps due to technical issues in adapting the technique to RNA-folding. 相似文献62.
Gundry RL Riordon DR Tarasova Y Chuppa S Bhattacharya S Juhasz O Wiedemeier O Milanovich S Noto FK Tchernyshyov I Raginski K Bausch-Fluck D Tae HJ Marshall S Duncan SA Wollscheid B Wersto RP Rao S Van Eyk JE Boheler KR 《Molecular & cellular proteomics : MCP》2012,11(8):303-316
Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations. 相似文献
63.
64.
Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes 总被引:1,自引:0,他引:1
Nath A Grinkova YV Sligar SG Atkins WM 《The Journal of biological chemistry》2007,282(39):28309-28320
The membrane-bound protein cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme. Most studies of ligand binding by CYP3A4 are currently carried out in solution, in the absence of a model membrane. Therefore, there is little information concerning the membrane effects on CYP3A4 ligand binding behavior. Phospholipid bilayer Nanodiscs are a novel model membrane system derived from high density lipoprotein particles, whose stability, monodispersity, and consistency are ensured by their self-assembly. We explore the energetics of four ligands (6-(p-toluidino)-2-naphthalenesulfonic acid (TNS), alpha-naphthoflavone (ANF), miconazole, and bromocriptine) binding to CYP3A4 incorporated into Nanodiscs. Ligand binding to Nanodiscs was monitored by a combination of environment-sensitive ligand fluorescence and ligand-induced shifts in the fluorescence of tryptophan residues present in the scaffold proteins of Nanodiscs; binding to the CYP3A4 active site was monitored by ligand-induced shifts in the heme Soret band absorbance. The dissociation constants for binding to the active site in CYP3A4-Nanodiscs were 4.0 microm for TNS, 5.8 microm for ANF, 0.45 microm for miconazole, and 0.45 microm for bromocriptine. These values are for CYP3A4 incorporated into a lipid bilayer and are therefore presumably more biologically relevant that those measured using CYP3A4 in solution. In some cases, affinity measurements using CYP3A4 in Nanodiscs differ significantly from solution values. We also studied the equilibrium between ligand binding to CYP3A4 and to the membrane. TNS showed no marked preference for either environment; ANF preferentially bound to the membrane, and miconazole and bromocriptine preferentially bound to the CYP3A4 active site. 相似文献
65.
Akelina Y 《Lab animal》2003,32(1):41-44
As the use of surgical procedures in rodents becomes increasingly common in biomedical research, institutions face the challenge of ensuring that personnel are properly trained to perform these procedures. The author describes a microsurgery training course in use at Columbia University. 相似文献
66.
Janumyan Y Cui Q Yan L Sansam CG Valentin M Yang E 《The Journal of biological chemistry》2008,283(49):34108-34120
BCL2 and BCL-x(L) facilitate G(0) quiescence by decreasing RNA content and cell size and up-regulating p27 protein, but the precise mechanism is not understood. We investigated the relationship between cell cycle regulation and the anti-apoptosis function of BCL2 and BCL-x(L). Neither caspase inhibition nor abrogation of mitochondria-dependent apoptosis by BAX and BAK deletion fully recapitulated the G(0) effects of BCL2 or BCL-x(L), suggesting that mechanisms in addition to anti-apoptosis are involved in the cell cycle arrest function of BCL2 or BCL-x(L). We found that BCL2 and BCL-x(L) expression in bax(-/-) bak(-/-) cells did not confer cell cycle effects, consistent with the G(0) function of BCL2 and BCL-x(L) being mediated through BAX or BAK. Stabilization of p27 in G(0) in BCL2 or BCL-x(L) cells was due to phosphorylation of p27 at Ser(10) by the kinase Mirk. In bax(-/-) bak(-/-) cells, total p27 and p27 phosphorylated at Ser(10) were elevated. Re-expression of BAX in bax(-/-) bak(-/-) cells and silencing of BAX and BAK in wild type cells confirmed that endogenous BAX and BAK modulated p27. These data revealed a novel role for BAX and BAK in the regulation of G(0) quiescence. 相似文献
67.
Integrin alphaVbeta3 Binds to the RGD motif of glycoprotein B of Kaposi's sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor 下载免费PDF全文
Kaposi's sarcoma-associated herpesvirus (KSHV) envelope-associated glycoprotein B (gB) is involved in the initial steps of binding to host cells during KSHV infection. gB contains an RGD motif reported to bind the integrin α3β1 during virus entry. Although the ligand specificity of α3β1 has been controversial, current literature indicates that α3β1 ligand recognition is independent of RGD. We compared α3β1 to the RGD-binding integrin, αVβ3, for binding to envelope-associated gB and a gB(RGD) peptide. Adhesion assays demonstrated that β3-CHO cells overexpressing αVβ3 specifically bound gB(RGD), whereas α3-CHO cells overexpressing α3β1 did not. Function-blocking antibodies to αVβ3 inhibited the adhesion of HT1080 fibrosarcoma cells to gB(RGD), while antibodies to α3β1 did not. Using affinity-purified integrins and confocal microscopy, αVβ3 bound to gB(RGD) and KSHV virions, demonstrating direct receptor-ligand interactions. Specific αVβ3 antagonists, including cyclic and dicyclic RGD peptides and αVβ3 function-blocking antibodies, inhibited KSHV infection by 70 to 80%. Keratinocytes from α3-null mice lacking α3β1 were fully competent for infection by KSHV, and reconstitution of α3β1 function by transfection with α3 cDNA reduced KSHV infectivity from 74% to 55%. Additional inhibitory effects of α3β1 on the cell surface expression of αVβ3 and on αVβ3-mediated adhesion of α3-CHO cells overexpressing α3β1 were detected, consistent with previous reports of transdominant inhibition of αVβ3 function by α3β1. These observations may explain previous reports of an inhibition of KSHV infection by soluble α3β1. Our studies demonstrate that αVβ3 is a cellular receptor mediating both the cell adhesion and entry of KSHV into target cells through binding the virion-associated gB(RGD). 相似文献
68.
The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
Budovskaya YV Stephan JS Reggiori F Klionsky DJ Herman PK 《The Journal of biological chemistry》2004,279(20):20663-20671
When faced with nutrient deprivation, Saccharomyces cerevisiae cells enter into a nondividing resting state, known as stationary phase. The Ras/PKA (cAMP-dependent protein kinase) signaling pathway plays an important role in regulating the entry into this resting state and the subsequent survival of stationary phase cells. The survival of these resting cells is also dependent upon autophagy, a membrane trafficking pathway that is induced upon nutrient deprivation. Autophagy is responsible for targeting bulk protein and other cytoplasmic constituents to the vacuolar compartment for their ultimate degradation. The data presented here demonstrate that the Ras/PKA signaling pathway inhibits an early step in autophagy because mutants with elevated levels of Ras/PKA activity fail to accumulate transport intermediates normally associated with this process. Quantitative assays indicate that these increased levels of Ras/PKA signaling activity result in an essentially complete block to autophagy. Interestingly, Ras/PKA activity also inhibited a related process, the cytoplasm to vacuole targeting (Cvt) pathway that is responsible for the delivery of a subset of vacuolar proteins in growing cells. These data therefore indicate that the Ras/PKA signaling pathway is not regulating a switch between the autophagy and Cvt modes of transport. Instead, it is more likely that this signaling pathway is controlling an activity that is required during the early stages of both of these membrane trafficking pathways. Finally, the data suggest that at least a portion of the Ras/PKA effects on stationary phase survival are the result of the regulation of autophagy activity by this signaling pathway. 相似文献
69.
Ben Ari Z Avlas O Pappo O Zilbermints V Cheporko Y Bachmetov L Zemel R Shainberg A Sharon E Grief F Hochhauser E 《Cellular physiology and biochemistry》2012,29(1-2):41-50
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. 相似文献
70.
Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs 总被引:1,自引:0,他引:1
Du G Altshuller YM Vitale N Huang P Chasserot-Golaz S Morris AJ Bader MF Frohman MA 《The Journal of cell biology》2003,162(2):305-315
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions. 相似文献