全文获取类型
收费全文 | 1951篇 |
免费 | 78篇 |
专业分类
2029篇 |
出版年
2024年 | 7篇 |
2023年 | 12篇 |
2022年 | 28篇 |
2021年 | 59篇 |
2020年 | 34篇 |
2019年 | 28篇 |
2018年 | 52篇 |
2017年 | 33篇 |
2016年 | 81篇 |
2015年 | 94篇 |
2014年 | 109篇 |
2013年 | 177篇 |
2012年 | 170篇 |
2011年 | 157篇 |
2010年 | 96篇 |
2009年 | 87篇 |
2008年 | 118篇 |
2007年 | 101篇 |
2006年 | 85篇 |
2005年 | 94篇 |
2004年 | 88篇 |
2003年 | 69篇 |
2002年 | 59篇 |
2001年 | 9篇 |
2000年 | 4篇 |
1999年 | 7篇 |
1998年 | 8篇 |
1997年 | 13篇 |
1996年 | 12篇 |
1995年 | 8篇 |
1994年 | 13篇 |
1993年 | 7篇 |
1992年 | 5篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 8篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 9篇 |
1984年 | 8篇 |
1983年 | 5篇 |
1982年 | 6篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1977年 | 3篇 |
1973年 | 7篇 |
1967年 | 3篇 |
1964年 | 2篇 |
排序方式: 共有2029条查询结果,搜索用时 46 毫秒
21.
Sumiyo Morita Akemi Hara Itaru Kojima Takuro Horii Mika Kimura Tadahiro Kitamura Takahiro Ochiya Katsumi Nakanishi Ryo Matoba Kenichi Matsubara Izuho Hatada 《PloS one》2009,4(1)
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas. 相似文献
22.
Binu Antony Takeshi Fujii Ken'ichi Moto Shogo Matsumoto Mai Fukuzawa Ryo Nakano Sadahiro Tatsuki Yukio Ishikawa 《Insect biochemistry and molecular biology》2009,39(2):90-95
The adzuki bean borer moth, Ostrinia scapulalis, uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone. At a step in the pheromone biosynthetic pathway, fatty-acyl precursors are converted to corresponding alcohols by an enzyme, fatty-acyl reductase (FAR). Here we report the cloning of FAR-like genes expressed in the pheromone gland of female O. scapulalis, and the characterization of a single pheromone-gland-specific FAR (pgFAR) and its functional assay using an insect cell expression system. As many as thirteen FAR-like genes (FAR-I–FAR-XIII) were expressed in the pheromone gland of O. scapulalis; however, only one (FAR-XIII) was pheromone-gland-specific. The deduced amino acid sequence of FAR-XIII predicted a 462-aa protein with a conserved NAD(P)H-binding motif in the N-terminal region, showing overall identity of 34% with the pgFAR of Bombyx mori. A functional assay using Sf9 cells transfected with an expression vector containing the open reading frame of the FAR-XIII gene has proven that FAR-XIII protein has the ability to convert a natural substrate, (Z)-11-tetradecenoic acid, to a corresponding alcohol, (Z)-11-tetradecenol. 相似文献
23.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function. 相似文献
24.
25.
Ryo Takeda Shigeru Tadano Masahiro Todoh Manabu Morikawa Minoru Nakayasu Satoshi Yoshinari 《Journal of biomechanics》2009,42(3):223-233
A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20 s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis. 相似文献
26.
Masae Ikura Kanji Furuya Shun Matsuda Ryo Matsuda Hiroki Shima Jun Adachi Tomonari Matsuda Takuma Shiraki Tsuyoshi Ikura 《Molecular and cellular biology》2015,35(24):4147-4157
The association and dissociation of DNA damage response (DDR) factors with damaged chromatin occurs dynamically, which is crucial for the activation of DDR signaling in a spatiotemporal manner. We previously showed that the TIP60 histone acetyltransferase complex acetylates histone H2AX, to facilitate H2AX exchange at sites of DNA damage. However, it remained unclear how the acetylation of histone H2AX by TIP60 is related to the DDR signaling. We found that the acetylation but not the phosphorylation of H2AX is essential for the turnover of NBS1 on damaged chromatin. The loss of H2AX acetylation at Lys 5 by TIP60 in cells disturbed the accumulation of NBS1 at sites of DNA damage. Although the phosphorylation of H2AX is also reportedly required for the retention of NBS1 at damage sites, our data indicated that the acetylation-dependent NBS1 turnover by TIP60 on damaged chromatin restricts the dispersal of NBS1 foci from the sites of DNA damage. These findings indicate the importance of the acetylation-dependent dynamic binding of NBS1 to damaged chromatin, created by histone H2AX exchange, for the proper accumulation of NBS1 at DNA damage sites. 相似文献
27.
Huy NT Serada S Trang DT Takano R Kondo Y Kanaori K Tajima K Hara S Kamei K 《Journal of biochemistry》2003,133(5):693-698
Plasmodium falciparum histidine-rich protein 2 (PfHRP2) has been suggested to be an initiator of the polymerization of heme, which is produced as by-product on the digestion of hemoglobin, and a promoter of the H(2)O(2)-induced degradation of heme in food vacuoles of the malarial parasite. In this work, we have designed PfHRP2 model peptides, R18 and R27 (18 and 27 residues, respectively), and used them for optical and electron spin resonance spectroscopic measurements to confirm that the axial ligands of the heme-PfHRP2 complex are the nitrogenous donors derived from the imidazole moieties of histidine residues of PfHRP2. In addition, we revealed that the affinities of R18 and R27 for heme (K(d) = 2.21 x 10(-6) M and 0.71 x 10(-6) M, respectively) might be as high as that of PfHRP2 (K(d) = 0.94 x 10(-6) M). The R27 peptide can remove heme from membrane-intercalated heme and inhibit heme-induced hemolysis. Therefore, we suggest another function of PfHRP2: it may play an important role in the neutralization of toxic heme in the parasite cytoplasm and infected erythrocytes by removing heme from heme-bound membranes or reducing heme-induced hemolysis. 相似文献
28.
Microtubules play multiple roles in a wide range of cellular phenomena, including cell polarity establishment and chromosome segregation. A number of microtubule regulators have been identified, including microtubule-associated proteins and kinases, and knowledge of these factors has contributed to our molecular understanding of microtubule regulation of each relevant cellular process. The known regulators, however, are insufficient to explain how those processes are linked to one another, underscoring the need to identify additional regulators. To find such novel mechanisms and microtubule regulators, we performed a screen that combined genetics and microscopy for fission yeast mutants defective in microtubule organization. We isolated approximately 900 mutants showing defects in either microtubule organization or the nuclear envelope, and these mutants were classified into 12 categories. We particularly focused on one mutant, kis1, which displayed spindle defects in early mitosis. The kis1 mutant frequently failed to assemble a normal bipolar spindle. The responsible gene encoded a kinetochore protein, Mis19 (also known as Eic1), which localized to the interface of kinetochores and spindle poles. We also found that the inner kinetochore proteins Mis6/CENP-I and Cnp1/CENP-A were delocalized from kinetochores in the kis1 cells and that kinetochore-microtubule attachment was defective. Another mutant, mis6, also displayed similar spindle defects. We conclude that Kis1 is required for inner kinetochore organization, through which Kis1 ensures kinetochore-microtubule attachment and spindle integrity. Thus, we propose an unexpected relationship between inner kinetochore organization and spindle integrity. 相似文献
29.
The ubiquitin–proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases including the PI3K-related kinases (PIKKs) ATM, ATR, and DNA-PK that orchestrate downstream signaling cascades in response to diverse genotoxic stimuli. In a previous work, we showed that inhibition of the proteasome by MG-132 suppressed 53BP1 (p53 binding protein1) phosphorylation as well as RPA2 (replication protein A2) phosphorylation in response to the topoisomerase I (TopI) poison camptothecin (CPT). To address the mechanism of proteasome-dependent RPA2 phosphorylation, we investigated the effects of proteasome inhibitors on the upstream PIKKs. MG-132 sharply suppressed CPT-induced DNA-PKcs autophosphorylation, a marker of the activation, whereas the phosphorylation of ATM and ATR substrates was only slightly suppressed by MG-132, suggesting that DNA-PK among the PIKKs is specifically regulated by the proteasome in response to CPT. On the other hand, MG-132 did not suppress DNA-PK activation in response to UV or IR. MG-132 blocked the interaction between DNA-PKcs and Ku heterodimer enhanced by CPT, and hydroxyurea pre-treatment completely abolished CPT-induced DNA-PKcs autophosphorylation, indicating a requirement for ongoing DNA replication. CPT-induced TopI degradation occurred independent of DNA-PK activation, suggesting that DNA-PK activation does not require degradation of trapped TopI complexes. The combined results suggest that CPT-dependent replication fork collapse activates DNA-PK signaling through a proteasome dependent, TopI degradation-independent pathway. The implications of DNA-PK activation in the context of TopI poison-based therapies are discussed. 相似文献
30.