首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   40篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   20篇
  2014年   12篇
  2013年   17篇
  2012年   15篇
  2011年   15篇
  2010年   10篇
  2009年   13篇
  2008年   15篇
  2007年   14篇
  2006年   10篇
  2005年   12篇
  2004年   19篇
  2003年   12篇
  2002年   17篇
  2001年   6篇
  2000年   10篇
  1999年   3篇
  1998年   7篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有350条查询结果,搜索用时 281 毫秒
31.
The protein-tyrosine phosphatase SHP-1 is a negative regulator of multiple signal transduction pathways. We observed that SHP-1 effectively antagonized Src-dependent phosphorylations in HEK293 cells. This occurred by dephosphorylation of Src substrates, because Src activity was unaffected in the presence of SHP-1. One reason for efficient dephosphorylation was activation of SHP-1 by Src. Recombinant SHP-1 had elevated activity subsequent to phosphorylation by Src in vitro, and SHP-1 variants with mutated phosphorylation sites in the C terminus, SHP-1 Y538F, and SHP-1 Y538F,Y566F were less active toward Src-generated phosphoproteins in intact cells. A second reason for efficient dephosphorylation is the substrate selectivity of SHP-1. Pull-down experiments with different GST-SHP-1 fusion proteins revealed efficient interaction of Src-generated phosphoproteins with the SHP-1 catalytic domain rather than with the SH2 domains. Phosphopeptides that correspond to good Src substrates were efficiently dephosphorylated by SHP-1 in vitro. Phosphorylated "optimal Src substrate" AEEEIpYGEFEA (where pY is phosphotyrosine) and a phosphopeptide corresponding to a recently identified Src phosphorylation site in p120 catenin, DDLDpY(296)GMMSD, were excellent SHP-1 substrates. Docking of these phosphopeptides into the catalytic domain of SHP-1 by molecular modeling was consistent with the biochemical data and explains the efficient interaction. Acidic residues N-terminal of the phosphotyrosine seem to be of major importance for efficient substrate interaction. Residues C-terminal of the phosphotyrosine probably contribute to the substrate selectivity of SHP-1. We propose that activation of SHP-1 by Src and complementary substrate specificities of SHP-1 and Src may lead to very transient Src signals in the presence of SHP-1.  相似文献   
32.
33.
Abscisic acid stress ripening (ASR1) is a highly charged low molecular weight plant specific protein that is regulated by salt- and water-stresses. The protein possesses a zinc-dependent DNA-binding activity (Kalifa et al., Biochem. J. 381 (2004) 373) and overexpression in transgenic plants results in an increased salt-tolerance (Kalifa et al., Plant Cell Environ. 27 (2004) 1459). There are no structure homologs of ASR1, thus the structural and functional domains of the protein cannot be predicted. Here, we map the protein domains involved in the binding of Zn(2+) and DNA. Using mild acid hydrolysis, and a series of ASR1 carboxy-terminal truncations we show that the zinc-dependent DNA-binding could be mapped to the central/carboxy-terminal domain. In addition, using MALDI-TOF-MS with a non-acidic matrix, we show that two zinc ions are bound to the amino-terminal domain. Other zinc ion(s) bind the DNA-binding domain. Binding of zinc to ASR1 induces conformational changes resulting in a decreased sensitivity to proteases.  相似文献   
34.
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.  相似文献   
35.
Culicoides oxystoma (Diptera: Ceratopogonidae) is an important vector species, reported mainly from Asia, with high potential to transmit viral diseases affecting livestock. In Japan, many arboviruses have been isolated from C. oxystoma, suggesting it as a key player in the epidemiology of several Culicoides-borne diseases. Over the years, C. oxystoma has also been reported in the Middle East region, including Israel. In this region, however, C. oxystoma cannot be easily distinguished morphologically from its sibling species included in the Culicoides schultzei complex. We therefore used genomic data for species identification and phylogeny resolution. Phylogenetic analyses based on internal transcribed spacer 1 (ITS-1) of ribosomal DNA and the mitochondrial gene encoding cytochrome oxidase subunit I (COI) showed that C. oxystoma from Israel is closely related to C. oxystoma from Japan. Using differential probing PCR, we showed that C. oxystoma is distributed all over the country, especially in Mediterranean climate regions. Culicoides oxystoma is less common or even absent in arid regions, while the other genetic cluster of C. schultzei complex was found only in the east of the country (mostly arid and semiarid regions). The molecular finding of C. oxystoma in wide geographical regions, together with its high proportion in the general Culicoides population and its vectoring potential, imply that it may be an important vector species in the Middle East.  相似文献   
36.
Crohn''s disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim.  相似文献   
37.
Natriuretic peptides (NP), including atrial natriuretic peptide (ANP), induce potent natriuresis and vasodilation and thereby generate hypotension in vivo. Despite intensive efforts, clinical application of NP as an antihypertensive agent is limited because of their short biological half-life and poor bioavailability. Recently, we have developed a strategy that facilitates slow release of peptides from PEG-peptide inactive conjugates, based on reversible pegylation. Peptides prepared by this approach undergo slow, spontaneous chemical hydrolysis at physiological conditions, releasing the native active peptide/protein drug from the inactive conjugates over prolonged periods. A PEG chain of 30 kDa was linked covalently to the alpha-amino side chain of the hormone via a MAL-Fmoc-NHS spacer, yielding PEG 30-Fmoc-ANP, a prodrug that releases the native hormone upon incubation at physiological conditions. Bolus administration of native ANP to Wistar rats receiving adrenaline yields a short, transitory effect in lowering blood pressure (BP), reaching a maximum at 2 min, and then returning to control values after 12 to 25 min. In contrast, administration of PEG 30-Fmoc-ANP lowered BP following a lag period of 50 min, and maintained low BP for a period exceeding 60 min. Saline or PEG 30-Fmoc-Alanine were not effective in lowering BP in Wistar rats. These results show that the novel compound, PEG 30-Fmoc-ANP, is a reversible pegylated prodrug derivative that facilitates a prolonged BP lowering effect in rats and may be considered as a candidate for development into an antihypertensive drug.  相似文献   
38.
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.  相似文献   
39.
The Dauer larva is a non-feeding alternative larval stage of some nematodes specialized for long-term survival and dispersal. In this study we compared proteome maps obtained from Dauer larvae with those from the corresponding third larval stage (L3) of the feeding life cycle of C. elegans wild-type strain N2. We demonstrate at the protein level that altered metabolism may participate in longevity determination of Dauers. We detected huge amounts of alcohol dehydrogenase (CE12212) and aldehyde dehydrogenase (CE29809) in Dauer animals, indicating highly active fermentative pathways. Inorganic pyrophosphatase (CE05448) that enables to metabolize pyrophosphate as a high-energy source was over-expressed in Dauers. An interesting differentially expressed protein was phosphatidylethanolamine-binding protein (CE38516) that was found in high abundance in samples from Dauer larvae. Protein synthesis may be lowered in Dauer animals by the reduced expression of splicing factor rsp-3 (CE31089) and methionyl-tRNA synthase (CE34219). We observed significantly lower amounts of the pepsin-like aspartyl protease 1 (CE21681) in non-feeding Dauers, which is in agreement with reduced nutrient digestion. Finally, the hypothetical protein R08E5.2 (CE33294) was present in high abundance in L3 animals.  相似文献   
40.
Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号