首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1503篇
  免费   197篇
  国内免费   2篇
  2023年   7篇
  2022年   15篇
  2021年   35篇
  2020年   15篇
  2019年   22篇
  2018年   33篇
  2017年   33篇
  2016年   43篇
  2015年   83篇
  2014年   86篇
  2013年   108篇
  2012年   124篇
  2011年   116篇
  2010年   68篇
  2009年   53篇
  2008年   69篇
  2007年   68篇
  2006年   73篇
  2005年   71篇
  2004年   61篇
  2003年   57篇
  2002年   46篇
  2001年   26篇
  2000年   40篇
  1999年   24篇
  1998年   15篇
  1997年   18篇
  1996年   14篇
  1995年   12篇
  1994年   11篇
  1993年   13篇
  1992年   17篇
  1991年   23篇
  1990年   9篇
  1989年   24篇
  1988年   19篇
  1987年   15篇
  1986年   11篇
  1985年   16篇
  1984年   10篇
  1983年   12篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   10篇
  1978年   13篇
  1977年   5篇
  1976年   5篇
  1973年   6篇
  1968年   4篇
排序方式: 共有1702条查询结果,搜索用时 31 毫秒
141.
Distributions of mosquito larvae likely are a consequence of multiple factors, although two commonly studied factors (quality of the larval environment and the terrestrial matrix in which these habitats reside) have rarely and simultaneously been varied in the field to understand distributions of larvae. We monitored aquatic containers of two leaf detritus levels within a forest, prairie, and industrial habitat across five months to understand the temporal and spatial colonization of aquatic invertebrates in Northcentral Illinois, USA. Data were collected monthly on mosquito populations and the composition of other invertebrates colonizing containers. Overall, six species of mosquitoes colonized containers, with Culex restuans and Aedes triseriatus having the highest relative abundances. There were strong seasonal abundance patterns for these two mosquito species, with the dominant species changing over time in the forest habitat. The responses of other mosquito taxa were more variable, with abundances reflective of either the terrestrial matrix or larval habitat quality. High detritus containers supported the highest abundances of most species encountered, regardless of habitat. Non-mosquito taxa were less common numerically, but analyses suggested that some taxa, such as syrphid larvae, often co-occurred with mosquitoes. Nested subset analysis indicated communities were strongly nested, and that both habitat type and detritus level were important in explaining nested patterns of aquatic invertebrates. Our data show that both the larval habitat and the surrounding terrestrial matrix shape patterns of container mosquitoes, and that other container invertebrates vary in similar ways as mosquitoes. Handling editor: K. Martens  相似文献   
142.
Investigations of competitive interactions emphasize non-detrital resources, even though detritus is a major component of most food webs. Studies of competing species focus usually on single resource types, although consumers in nature are likely to encounter mixtures of resource types that may affect whether competition results in exclusion or coexistence. The invasive mosquito Aedes albopictus is capable of excluding the native mosquito Ochlerotatus triseriatus in competition for single detritus types in laboratory and field microcosms. In this study, we used nine ratios of two detritus types (animal and leaf) common in natural containers to test whether detritus ratios affect the outcome of competition. Under intraspecific and interspecific competition, A. albopictus attained higher survival and estimated population growth rate than did O. triseriatus. Unlike past studies, both species had positive growth and high adult survival, with little evidence of competitive effects, under one resource ratio (10:1 ratio of leaf : animal detritus) regardless of mosquito densities, suggesting potential coexistence. Path analysis showed that densities of larvae had negative effects on population growth for O. triseriatus but not for A. albopictus, indicating competitive superiority of A. albopictus. Population growth of both species was affected strongly by the direct paths from animal (positive) and leaf (negative) detritus, and the indirect effect of leaf detritus via bacterial production (positive). Field sampling established that detritus entered real tree holes in ratios similar to those in our experiment, suggesting that natural variation in detritus ratios may influence local coexistence of these species. Seasonal variation in ratios of plant and animal detritus indicated that temporal as well as spatial variation in inputs may be important for potential coexistence.  相似文献   
143.
The phenotype of endothelial cells (ECs) is specific to the vascular bed from which they originate. To examine how mechanical forces alter the phenotype of different ECs, we compared the effects of cyclic strain and motion control on reactive oxygen species (ROS) production and metabolism and cell adhesion molecule expression in human umbilical vein endothelial cells (HUVEC) vs. human aortic endothelial cells (HAEC). HUVEC and HAEC were subjected to cyclic strain (10% or 20%, 1 Hz), to a motion control that simulated fluid agitation over the cells without strain, or to static conditions for 24 h. We measured H2O2 production with dichlorodihydrofluorescein acetate and superoxide with dihydroethidium fluorescence changes; superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities spectrophotometrically; and vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 protein expression with Western blot analyses. HUVEC under cyclic strain showed 1) higher intracellular H2O2 levels, 2) increased SOD, catalase, and GPx activities, and 3) greater VCAM-1 and ICAM-1 protein expression, compared with motion control or static conditions. However, in HAEC, motion control induced higher levels of ROS, enzyme activities associated with ROS defense, and VCAM-1 and ICAM-1 expression than cyclic strain. The opposite responses obtained with these two human EC types may reflect their vessels of origin, in that HAEC are subjected to higher cyclic strain deformations in vivo than HUVEC. phenotype; reactive oxygen species; inflammation; shear stress  相似文献   
144.
Green tea has been reported as potential dietary protection against numerous cancers and has been shown to have activity in bladder tumor inhibition in different animal models. The goal of this study was to examine the effects of (-)-epigallocatechin gallate (EGCG-the major phytochemical in green tea) on growth inhibition and behavior of human bladder carcinoma cells and to identify the altered signaling pathway(s) underlying the response to EGCG exposure. EGCG inhibited the in vitro growth of invasive bladder carcinoma cells with an IC(50) range of 70-87 microM. At a concentration of 20 microM, EGCG decreased the migratory potential of bladder carcinoma cells with concomitant activation of p42/44 MAPK and STAT3 and inactivation of Akt. Using biochemical inhibitors of MAPK/ERK, and siRNA to knockdown STAT3 and Akt, inhibition of migration was recorded associated with Akt but not MAPK/ERK or STAT3 signaling in bladder cells. In addition, EGCG downregulated N-cadherin in a dose-dependent manner where reduction in N-cadherin expression paralleled declining migratory potential. Continuous feeding of EGCG to mice prior to and during the establishment of bladder carcinoma xenografts in vivo revealed >50% reduction in mean final tumor volume (P 相似文献   
145.
146.
147.
148.
Calcium permeability and the concomitant calcium block of monovalent ion current (“Ca2+ block”) are properties of cyclic nucleotide–gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca2+ block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca2+ block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca2+ block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca2+ block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca2+ block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca2+ block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca2+ block.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号