首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1522篇
  免费   193篇
  国内免费   5篇
  2023年   7篇
  2022年   14篇
  2021年   37篇
  2020年   15篇
  2019年   21篇
  2018年   31篇
  2017年   32篇
  2016年   42篇
  2015年   82篇
  2014年   85篇
  2013年   105篇
  2012年   124篇
  2011年   121篇
  2010年   75篇
  2009年   55篇
  2008年   70篇
  2007年   69篇
  2006年   71篇
  2005年   71篇
  2004年   62篇
  2003年   57篇
  2002年   47篇
  2001年   25篇
  2000年   40篇
  1999年   23篇
  1998年   13篇
  1997年   15篇
  1996年   13篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   18篇
  1991年   23篇
  1990年   10篇
  1989年   23篇
  1988年   19篇
  1987年   15篇
  1986年   10篇
  1985年   16篇
  1984年   10篇
  1983年   12篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   12篇
  1978年   14篇
  1977年   5篇
  1976年   5篇
  1973年   6篇
  1971年   5篇
排序方式: 共有1720条查询结果,搜索用时 15 毫秒
101.
102.
Human umbilical vein endothelial cells (HUVECs) are an endothelial model of replicative senescence. Oxidative stress, possibly due to dysfunctional mitochondria, is believed to play a key role in replicative senescence and atherosclerosis, an age-related vascular disease. In this study, we determined the effect of cell division on genomic instability, mitochondrial function, and redox status in HUVECs that were able to replicate for approximately 60 cumulative population doublings (CPD). After 20 CPD, the nuclear genome deteriorated and the protein content of the cell population increased. This indicated an increase in cell size, which was accompanied by an increase in oxygen consumption, ATP production, and mitochondrial genome copy number and approximately 10% increase in mitochondrial mass. The antioxidant capacity increased, as seen by an increase in reduced glutathione, glutathione peroxidase, GSSG reductase, and glucose-6-phosphate dehydrogenase. However, by CPD 52, the latter two enzymes decreased, as well as the ratio of mitochondrial-to-nuclear genome copies, the mitochondrial mass, and the oxygen consumption per milligram of protein. Our results signify that HUVECs maintain a highly reducing (GSH) environment as they replicate despite genomic instability and loss of mitochondrial function.  相似文献   
103.
Marine sponges frequently contain a complex mixture of bacteria, fungi, unicellular algae and cyanobacteria. Epifluorescent microscopy showed that Mycale (Carmia) hentscheli contained coccoid cyanobacteria. The 16S rRNA gene was amplified, fragments cloned and analysed using amplified rRNA gene restriction analysis. The nearly complete 16S rRNA gene of distinct clones was sequenced and aligned using ARB. The phylogenetic analysis indicated the presence of four closely related clones which have a high (8%) sequence divergence from known cyanobacteria, Cyanobacterium stanieri being the closest, followed by Prochloron sp. and Synechocystis sp. All belong to the order Chroococcales. The lack of non-molecular evidence prevents us from proposing a new genus.  相似文献   
104.
Using a yeast two-hybrid library screen, we have identified that the heart specific FHL2 protein, four-and-a-half LIM protein 2, interacted with human DNA-binding nuclear protein, hNP220. Domain studies by the yeast two-hybrid interaction assay revealed that the second LIM domain together with the third and the fourth LIM domains of FHL2 were responsible to the binding with hNP220. Using green fluorescent protein (GFP)-FHL2 and blue fluorescent protein (BFP)-hNP220 fusion proteins co-expressed in the same cell, we demonstrated a direct interaction between FHL2 and hNP220 in individual nucleus by two-fusion Fluorescence Resonance Energy Transfer (FRET) assay. Besides, Western blot analysis using affinity-purified anti-FHL2 antipeptide antibodies confirmed a 32-kDa protein of FHL2 in heart only. Virtually no expression of FHL2 protein was detected in brain, liver, lung, kidney, testis, skeletal muscle, and spleen. Moreover, the expression of FHL2 protein was also detectable in the human diseased heart tissues. Our results imply that FHL2 protein can shuttle between cytoplasm and nucleus and may act as a molecular adapter to form a multicomplex with hNP220 in the nucleus, thus we speculate that FHL2 may be particularly important for heart muscle differentiation and the maintenance of the heart phenotype.  相似文献   
105.
Auxin is the mobile signal controlling the rate of growth and specific aspects of the development of plants. It has been known for over a century that auxins act as the messenger linking plant development to specific environmental changes. An often overlooked aspect of how this is accomplished is the effect of the environment on metabolism of the major plant auxin, indole-3-acetic acid (IAA). We have studied the metabolism of IAA in relation to one environmental variable, growth temperature. The model system used was an inbred line of the aquatic monocot Lemna gibba G-3, 3F7-11 grown at temperatures ranging from 5 degrees C to 35 degrees C. IAA levels, the rate of IAA turnover, and the patterns of label incorporation from IAA precursors were measured using stable isotope-mass spectrometric techniques and were evaluated relative to growth at the experimental temperatures. IAA levels exhibited unusually high variability in plants grown at 15 degrees C and 20 degrees C. Turnover rates were quite rapid throughout the range of experimental temperatures except at 25 degrees C, where IAA turnover was notably slower. These results suggest that a transition occurred over these temperatures for some aspect of IAA metabolism. Analysis of [(15)N]anthranilate and [(2)H(5)]tryptophan (Trp) incorporation into IAA showed that Trp-dependent biosynthesis predominated at 15 degrees C; however, Trp-independent biosynthesis of IAA was the major route to IAA at 30 degrees C. The effects of growth temperature on auxin levels have been reported previously, but no prior studies correlated these effects with which pathway becomes the primary one for IAA production.  相似文献   
106.
As an approach toward understanding the molecular mechanisms of neuronal differentiation, we utilized DNA microarrays to elucidate global patterns of gene expression during pontocerebellar development. Through this analysis, we identified groups of genes specific to neuronal precursor cells, associated with axon outgrowth, and regulated in response to contact with synaptic target cells. In the cerebellum, we identified a phase of granule cell differentiation that is independent of interactions with other cerebellar cell types. Analysis of pontine gene expression revealed that distinct programs of gene expression, correlated with axon outgrowth and synapse formation, can be decoupled and are likely influenced by different cells in the cerebellar target environment. Our approach provides insight into the genetic programs underlying the differentiation of specific cell types in the pontocerebellar projection system.  相似文献   
107.
Dietary oxidants like lipid hydroperoxides (LOOH) can perturb cellular glutathione/glutathione disulphide (GSH/GSSG) status and disrupt mucosal turnover. This study examines the effect of LOOH on GSH/GSSG balance and phase transitions in the human colon cancer CaCo-2 cell. LOOH at 1 or 5 micro m were noncytotoxic, but disrupted cellular GSH/GSSG and stimulated proliferative activity at 6 h that paralleled increases in ornithine decarboxylase activity, thymidine incorporation, expression of cyclin D1/cyclin-dependent kinase 4, phosphorylation of retinoblastoma protein, and cell progression from G0/G1 to S. At 24 h, LOOH-induced sustained GSH/GSSG imbalance mediated growth arrest at G0/G1 that correlated with suppression of proliferative activity and enhanced oxidative DNA damage. LOOH-induced cell transitions were effectively blocked by N-acetylcysteine. Collectively, the study shows that subtoxic LOOH levels induce CaCo-2 GSH/GSSG imbalance that elicits time-dependent cell proliferation followed by growth arrest. These results provide insights into the mechanism of hydroperoxide-induced disruption of mucosal turnover with implications for understanding oxidant-mediated genesis of gut pathology.  相似文献   
108.
109.
The potential widespread use of tissue-engineered matrices in soft-tissue reconstruction has been limited by the difficulty in fabricating and confirming a functional microcirculation. Acellular dermal matrix placed in a soft-tissue pocket acts as a scaffold to be incorporated by the host's fibrovascular tissue. A new method for noninvasive real-time observation of functional microvascular networks using orthogonal polarization spectral (OPS) imaging has recently been reported. Arterioles, venules, and capillaries can be directly visualized, and the movement of individual blood cells through them can be observed. The present study was performed to investigate the use of prefabricated acellular dermal matrix with an arteriovenous unit for the repair of abdominal muscle defects. OPS imaging was used to determine the presence of a functional microcirculation in the neovascularized matrix. In Sprague-Dawley rats, vascularized matrix was prefabricated by placing the superficial epigastric artery and vein on a 2-cm x 2-cm implant-type acellular dermal matrix in the thigh. Three weeks after implantation, the matrix-arteriovenous unit was elevated as an axial-type flap and a 2-cm x 2-cm full-thickness block of abdominal muscle immediately superior to the inguinal ligament was resected. Additional procedures were performed according to group: no repair (group 1, n = 20); repair with nonvascularized acellular dermal matrix (group 2, n = 20); repair with devascularized acellular dermal matrix (group 3, = 20); and repair with vascularized acellular dermal matrix (group 4, n = 20). OPS imaging (field of view, 1 mm in diameter; scan depth range, 0.2 mm) was performed on both sides of each flap on a total of 10 random distal regions before and after pedicle transection in group 3 and with the pedicle preserved in group 4. Hernia rate and duration of survival were compared for 21 days. OPS imaging showed directional blood cell movement through the capillary network in all areas scanned in group 4. No microvascular perfusion was observed after pedicle transection in group 3. Hernia rates of 100, 80, 90, and 0 percent were seen in groups 1, 2, 3, and 4, respectively. Median survival times of 9, 11.5, 9, and 21 postoperative days were noted in groups 1, 2, 3, and 4, respectively. Histopathologic analysis with factor VIII revealed full-thickness infiltration of the matrix by endothelial cells, signifying newly formed blood vessels. Repair of abdominal muscle defects using vascularized acellular dermal matrix resulted in no hernia and survival of all animals for the duration of study. However, repairs using avascular or devascularized matrix resulted in significant rates of hernia and decreased survival. Acellular dermal matrix can be prefabricated into vascularized tissue using an arteriovenous unit and used successfully to repair abdominal muscle defects. OPS imaging allowed for high-contrast direct visualization of microcirculation in previously acellular tissue following prefabrication with an arteriovenous unit.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号