首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159032篇
  免费   12485篇
  国内免费   12974篇
  2024年   225篇
  2023年   1760篇
  2022年   4104篇
  2021年   7692篇
  2020年   5220篇
  2019年   6560篇
  2018年   6309篇
  2017年   4719篇
  2016年   6650篇
  2015年   9471篇
  2014年   11336篇
  2013年   12034篇
  2012年   14500篇
  2011年   13136篇
  2010年   8263篇
  2009年   7449篇
  2008年   8599篇
  2007年   7800篇
  2006年   6767篇
  2005年   5516篇
  2004年   4732篇
  2003年   4291篇
  2002年   3706篇
  2001年   3163篇
  2000年   2806篇
  1999年   2718篇
  1998年   1643篇
  1997年   1539篇
  1996年   1445篇
  1995年   1283篇
  1994年   1199篇
  1993年   931篇
  1992年   1246篇
  1991年   947篇
  1990年   747篇
  1989年   680篇
  1988年   533篇
  1987年   491篇
  1986年   394篇
  1985年   412篇
  1984年   212篇
  1983年   218篇
  1982年   129篇
  1981年   100篇
  1980年   80篇
  1979年   91篇
  1977年   65篇
  1975年   61篇
  1974年   58篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
11.
Many studies have examined the association between the FABP2 (rs1799883) Ala54Thr gene polymorphism and type 2 diabetes mellitus risk (T2DM) in various populations, but their results have been inconsistent. To assess this relationship more precisely, A HuGE review and meta‐analysis were performed. The PubMed and CNKI database was searched for case‐control studies published up to April 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. Ultimately, 13 studies, comprising 2020 T2DM cases and 2910 controls were included. Overall, for the Thr carriers (Ala/Thr and Thr/Thr) versus the wild‐type homozygotes (Ala/Ala), the pooled OR was 1.18 (95% CI = 1.04–1.34, P = 0.062 for heterogeneity), for Thr/Thr versus Ala/Ala the pooled OR was 1.17 (95% CI = 1.05–1.41 P = 0.087 for heterogeneity). In the stratified analysis by ethnicity, the significantly risks were found among Asians but not Caucasians. This meta‐analysis suggests that the FABP2 (rs1799883) Ala54Thr polymorphisms are associated with increased susceptibility to T2DM risk among Asians but not Caucasians.  相似文献   
12.
13.
Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial.  相似文献   
14.
In recent years, Staphylococcus epidermidis has become a major nosocomial pathogen and the most common cause of intravascular catheter-related bacteremia, which can increase morbidity and mortality and significantly affect patient recovery. We report a draft genome sequence of Staphylococcus epidermidis AU12-03, isolated from an intravascular catheter tip.  相似文献   
15.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
16.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
17.
18.
  相似文献   
19.
20.
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号