首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9963篇
  免费   879篇
  国内免费   851篇
  11693篇
  2024年   27篇
  2023年   160篇
  2022年   337篇
  2021年   581篇
  2020年   409篇
  2019年   448篇
  2018年   426篇
  2017年   308篇
  2016年   433篇
  2015年   618篇
  2014年   787篇
  2013年   767篇
  2012年   931篇
  2011年   782篇
  2010年   547篇
  2009年   428篇
  2008年   464篇
  2007年   499篇
  2006年   409篇
  2005年   343篇
  2004年   304篇
  2003年   234篇
  2002年   202篇
  2001年   176篇
  2000年   159篇
  1999年   155篇
  1998年   71篇
  1997年   71篇
  1996年   72篇
  1995年   53篇
  1994年   65篇
  1993年   53篇
  1992年   77篇
  1991年   59篇
  1990年   39篇
  1989年   51篇
  1988年   29篇
  1987年   33篇
  1986年   25篇
  1985年   25篇
  1984年   8篇
  1983年   11篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Hippocampal neural stem cell (NSC) proliferation is known to decline with age, which is closely linked to learning and memory impairments. In the current study, we found that the expression level of miR-181a-5p was decreased in the hippocampal NSCs of aged mice and that exogenous overexpression of miR-181a-5p promoted NSC proliferation without affecting NSC differentiation into neurons and astrocytes. The mechanistic study revealed that phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, was the target of miR-181a-5p and knockdown of PTEN could rescue the impairment of NSC proliferation caused by low miR-181a-5p levels. Moreover, overexpression of miR-181a-5p in the dentate gyrus enhanced the proliferation of NSCs and ameliorated learning and memory impairments in aged mice. Taken together, our findings indicated that miR-181a-5p played a functional role in NSC proliferation and aging-related, hippocampus-dependent learning and memory impairments.  相似文献   
952.
The chloroviruses (family Phycodnaviridae), unlike most viruses, encode some, if not most, of the enzymes involved in the glycosylation of their structural proteins. Annotation of the gene product B736L from chlorovirus NY-2A suggests that it is a glycosyltransferase. The structure of the recombinantly expressed B736L protein was determined by X-ray crystallography to 2.3-Å resolution, and the protein was shown to have two nucleotide-binding folds like other glycosyltransferase type B enzymes. This is the second structure of a chlorovirus-encoded glycosyltransferase and the first structure of a chlorovirus type B enzyme to be determined. B736L is a retaining enzyme and belongs to glycosyltransferase family 4. The donor substrate was identified as GDP-mannose by isothermal titration calorimetry and was shown to bind into the cleft between the two domains in the protein. The active form of the enzyme is probably a dimer in which the active centers are separated by about 40 Å.Glycosyltransferases constitute a large family of enzymes that catalyze the transfer of sugar moieties from donor molecules to specific acceptor molecules. Unlike other enzyme families that usually share conserved features in their primary sequences, glycosyltransferases can have highly diversified sequences that have been grouped into more than 90 families (designated GTn, where n = 1, 2, …) (http://www.CAZy.org) (1, 15). However, two families, GT2 and GT4, account for about half of the total number of glycosyltransferases. Despite the large variation in the primary sequences of glycosyltransferases, their three-dimensional structures are usually conserved. There are two major glycosyltransferase structural types, named GT-A and GT-B. The GT-A members contain a single nucleotide-binding domain consisting of six parallel β-strands flanked by connecting α-helices (referred to as a “Rossmann fold” in most of the literature on these enzymes and herein). GT-A enzyme activities are usually metal ion dependent. The GT-B type glycosyltransferases have two Rossmann folds separated by a cleft that forms the substrate-binding site. Metal ions are normally not required for GT-B function. Based on their catalytic mechanism, glycosyltransferases are also classified as either retaining or inverting enzymes depending on the geometry between the sugar donor and the receptor in the product molecule (e.g., depending on whether the anomeric carbon atom is linked to the acceptor via its α or β position). If the anomeric carbon atom has the same configuration in the donor and in the product, the enzyme is classified as a retaining enzyme; if the configurations are different, the enzyme is considered to be an inverting enzyme (2).Many viruses, especially those that infect eukaryotic cells, have extensively glycosylated structural proteins. Glycans coating viral structural proteins serve multiple biological roles, e.g., they mimic host glycans to evade host cell immune reactions, aid in folding or assembly of viral structural proteins, function as a receptor recognized by cell surface proteins, or aid in stabilizing viral particles (see, e.g., reference 36).Typically, viruses use host-encoded glycosyltransferases and glycosidases located in the endoplasmic reticulum (ER) and Golgi apparatus to add and remove N-linked sugar residues from virus glycoproteins either during or shortly after translation of the protein. This posttranslational processing aids in protein folding and requires other host-encoded enzymes. After folding and assembly, virus glycoproteins are transported by host-sorting and membrane transport functions to virus-specified regions in host membranes, where they displace host glycoproteins. Progeny viruses then bud through these virus-specific target membranes, in what is usually the final step in the assembly of infectious virions (3, 14, 21, 36). Thus, nascent viruses become infectious only by budding through the target membrane, usually the plasma membrane, as they are released from the cell. Consequently, the glycan portion of virus glycoproteins is host specific. The theme that emerges is that virus glycoproteins are synthesized and glycosylated by the same mechanisms as host glycoproteins. Therefore, the only way to alter glycosylation of virus proteins is to either grow the virus in a different host or have a mutation in the virus protein that alters the protein glycosylation site.One explanation for this scenario is that, in general, viruses lack genes encoding glycosyltransferases. However, a few virus-encoded glycosyltransferases have been reported in recent years (see reference 17 for a review). Often these virus-encoded glycosyltransferases add sugars to compounds other than proteins. For instance, some phage-encoded glycosyltransferases modify virus DNA to protect it from host restriction endonucleases (see, e.g., reference 10), and a glycosyltransferase encoded by baculoviruses modifies a host insect ecdysteroid hormone, leading to its inactivation (22). Bovine herpesvirus 4 encodes a β-1,6-N-acetyl-glucosaminyltransferase that is localized in the Golgi apparatus and is probably involved in posttranslational modification of the virus structural proteins (32).One group of viruses differs from the scenario that viruses use the host machinery located in the ER and the Golgi apparatus to glycosylate their glycoproteins. These viruses are the large, plaque-forming, double-stranded DNA (dsDNA)-containing chloroviruses (family Phycodnaviridae) that infect eukaryotic algae (4, 34, 39, 40). The chloroviruses have up to 400 protein-encoding genes (or coding sequences [CDSs]). Annotation of six chlorovirus genomes showed that each virus encodes 3 to 6 putative glycosyltransferases (7-9, 16, 33). Three of these viruses, NY-2A, AR158, and the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1), infect Chlorella strain NC64A. Two of the viruses, MT325 and FR483, infect Chlorella Pbi, and one of them, Acanthocystis turfacea chlorella virus (ATCV-1), infects Chlorella SAG 3.83.Glycosylation of the PBCV-1 major capsid protein, Vp54, is at least partially performed by the viral glycosyltransferases (11, 20, 33, 38, 41). PBCV-1 encodes 5 putative glycosyltransferases. A previous structural study established that the N-terminal 211 amino acids of the A64R protein from PBCV-1 form a GT-A group glycosyltransferase that is a retaining enzyme belonging to the GT34 family and that UDP-glucose possibly serves as the donor sugar (41).Among the four additional PBCV-1 glycosyltransferase-encoding genes, gene a546l encodes a 396-amino-acid protein that resembles members in the GT4 family of glycosyltransferases, based on amino acid sequence comparison of members in the CAZy classification (1, 15). Homologs of this protein, A546L, are encoded by 3 other chloroviruses, NY-2A, AR158, and ATCV-1. Here, we report the crystal structure of one of these homologs, B736L, at 2.3-Å resolution.  相似文献   
953.
Hidden chromosome instability in 53 persons who underwent radiation exposure of different intensity was evaluated with the use of the modified G2-bleomycin sensitivity assay. A wide interindividual variability in the frequency of chromosome aberrations and absence of positive correlation between the background and bleomycin-induced cytogenetic effects in all examined individuals were found. The maximal number (57.9%) of individuals hypersensitive to the testing mutagenic activity of bleomycin was found in the group of reconvalescents of acute radiation syndrome. In the other groups, the frequency of individuals with hidden chromosome instability was practically the same and did not exceed 33.3%. The results confirmed the reality of the radiation-induced modification of genetically determined susceptibility of human somatic cell chromosomes to mutagenic stress; such susceptibility depends on the intensity and character of irradiation.  相似文献   
954.
Pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not clear. In this study we aimed to identify proteins involved in NAFLD development in free fatty acids (FFA)‐induced hepatosteatotic cells and in human liver biopsies. Steatosis was induced by incubating a normal human hepatocyte‐derived cell line L‐02 with FFA. Differentially expressed proteins in the steatotic cells were analyzed by two‐dimensional gel electrophoresis‐based proteomics. Involvement of one of the up‐regulated proteins in steatosis was characterized using the RNA interference approach with the steatotic cells. Protein expression levels in liver biopsies of patients with NAFLD were assessed by immunohistochemistry. Proteomic analysis of L‐02 steatotic cells revealed the up‐regulation of ERp57, a condition not previously implicated in NAFLD. Knockdown of ERp57 expression with siRNA significantly reduced fat accumulation in the steatotic cells. ERp57 expression was detected in 16 out of 17 patient biopsies and correlated with inflammation grades or fibrosis stages, while in 5 normal biopsies ERp57 expression was not detectable in hepatocytes. In conclusion, ERp57 was up‐regulated in FFA‐induced steatotic hepatic cells and in NAFLD patient livers and demonstrated steatotic properties in cultured cells. Further investigations are warranted to verify the involvement of ERp57 in NAFLD development. J. Cell. Biochem. 110: 1447–1456, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
955.
Bartonella quintana is a bacterium that causes a broad spectrum of diseases in humans including trench fever. Humans were previously considered to be the primary, if not the only, reservoir hosts for B. quintana. To identify the animal reservoir and extend our understanding of the ecological and evolutionary history of B. quintana, we examined blood samples from macaques and performed multilocus sequence typing (MLST) analysis. We demonstrated the prevalence of B. quintana infection was common in macaques from main primate centres in mainland China. Overall, 18.0% (59/328) of rhesus macaques and 12.7% (39/308) of cynomolgus macaques were found to be infected with B. quintana by blood culture and/or polymerase chain reaction. The infection was more frequently identified in juvenile and young monkeys compared with adult animals. In contrast with the relatively low level of sequence divergence of B. quintana reported in humans, our investigation revealed much higher genetic diversity in nonhuman primates. We identified 44 new nucleotide variable sites and 14 novel sequence types (STs) among the B. quintana isolates by MLST analysis. Some STs were found only in cynomolgus macaques, while some others were detected only in rhesus macaques, suggesting evidence of host‐cospeciation, which were further confirmed by phylogenetic analysis and Splits decomposition analysis. Our findings suggest that trench fever may primarily be a zoonotic disease with macaques as the natural hosts.  相似文献   
956.
Our aim was to investigate the effects of moderate load, regular swimming exercise on stress‐induced anxiety, and associated oxidative organ injury. Male Sprague‐Dawley rats (n = 48) were either kept sedentary or submitted to swimming exercise for 8 weeks. Rats were then divided as non‐stressed, acute stress, and chronic stress groups. After acute or chronic stress (electric foot shocks) applications, rats were placed on a holeboard and the exploratory behavior was recorded to assess the anxiety. Rats were decapitated after the stress application. Acute and chronic stress induction led to increased serum cortisol levels as compared to non‐stressed groups. Plasma aspartate aminotransferase levels that were elevated in sedentary rats with both stress exposures were lower in trained rats. Malondialdehyde levels and myeloperoxidase activity were increased in the cardiac muscle, liver, stomach, and brain of the stressed rats with a concomitant reduction in the glutathione levels, while stress‐induced changes in malondialdehyde, myeloperoxidase, and glutathione levels were reversed in the trained animals. Exercise, which led to increased malondialdehyde and reduced glutathione levels in the skeletal muscle of the non‐stressed rats, also protected against stress‐induced oxidative damage. Regular exercise with its anxiolytic and antioxidant effects ameliorates stress‐induced oxidative organ damage by a neutrophil‐dependent mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
957.
Affinity purification of protein complexes followed by identification using liquid chromatography/mass spectrometry (LC-MS/MS) is a robust method to study the fundamental process of protein interaction. Although affinity isolation reduces the complexity of the sample, fractionation prior to LC-MS/MS analysis is still necessary to maximize protein coverage. In this study, we compared the protein coverage obtained via LC-MS/MS analysis of protein complexes prefractionated using two commonly employed methods, SDS-PAGE and strong cation exchange chromatography (SCX). The two complexes analyzed focused on the nuclear proteins Bmi-1 and GATA3 that were expressed within the cells at low and high levels, respectively. Prefractionation of the complexes at the peptide level using SCX consistently resulted in the identification of approximately 3-fold more proteins compared to separation at the protein level using SDS-PAGE. The increase in the number of identified proteins was especially pronounced for the Bmi-1 complex, where the target protein was expressed at a low level. The data show that prefractionation of affinity isolated protein complexes using SCX prior to LC-MS/MS analysis significantly increases the number of identified proteins and individual protein coverage, particularly for target proteins expressed at low levels.  相似文献   
958.
We studied changes in human EEGs related to presentation of olfactory stimuli (smells of essential oils) and dependence of such rearrangements on the level of extroversion/introversion typical of the tested subject. It was shown that this feature of personality noticeably influences the pattern of odorant-induced changes in EEG. Persons with a predominance of introversion were characterized by higher levels of nonspecific activation of the brain related to perception of olfactory stimuli, which was manifested in a decrease in the power of low-frequency EEG components in the parietal, occipital, and temporal cerebral cortices. The pattern of the rise in coherence level of high-frequency spectrum range oscillations directed toward caudal leads is considered a manifestation of intensification of the intrinsic associative processes. In individuals with a predominance of extroversion, we observed, on the whole, smaller levels of nonspecific cerebral activation upon the action of olfactory stimulation. The fronto-parietal pattern of spatial EEG synchronization is indicative of the development of sensory-analytical processes related to perception of external information. In general, our data agree with the interpretation of such a psychological parameter as extroversion/introversion.  相似文献   
959.
960.
利用斜纹夜蛾Spodoptera litura培养细胞,对近年来在日本本州、九州和四国等地发现并筛选出的对斜纹夜蛾幼虫具有强烈杀虫活性的3株斜纹夜蛾核型多角体病毒(SpltMNPV)(K-3、G1-2和G10-3)进行了生物学活性和分子生物学的初步研究,克隆了多角体蛋白基因,并进行了序列分析和比较。结果表明:(1)SpltMNPV日本分离株K-3、G1-2和G10-3分别具有不同的特征性酶切图谱,分别属于3种基因型(A型、B型和C型); (2)3个分离株的芽生型病毒(budded virus)产生能力和多角体产生能力有差异,免疫印迹分析表明,多角体蛋白的分子量也不同;(3)日本株SpltMNPV核型多角体蛋白结构基因由747个核苷酸编码序列(编码249个氨基酸)组成,其序列与中国株SpltMNPV的同源性为98.9%,与其他6种核型多角体病毒有较高的同源性(61.7%~74.2%),但其5′端侧翼序列(nt-1~-100)与AcMNPV和BmNPV相比差异显著,在对该基因表达调控起决定性作用的8个高度保守核苷酸序列中(nt-44~-51)有2处发生自然突变。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号