The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches. 相似文献
The current study was designed to explore the role and underlying mechanism of lncRNA taurine up-regulated gene 1 (TUG1) in cardiac hypertrophy. Mice were treated by transverse aortic constriction (TAC) surgery to induce cardiac hypertrophy, and cardiomyocytes were treated by phenylephrine (PE) to induce hypertrophic phenotype. Haematoxylin-eosin (HE), wheat germ agglutinin (WGA) and immunofluorescence (IF) were used to examine morphological alterations. Real-time PCR, Western blots and IF staining were used to detect the expression of RNAs and proteins. Luciferase assay and RNA pull-down assay were used to verify the interaction. It is revealed that TUG1 was up-regulated in the hearts of mice treated by TAC surgery and in PE-induced cardiomyocytes. Functionally, overexpression of TUG1 alleviated cardiac hypertrophy both in vivo and in vitro. Mechanically, TUG1 sponged and sequestered miR-34a to increase the Dickkopf 1 (DKK1) level, which eventually inhibited the activation of Wnt/β-catenin signalling. In conclusion, the current study reported the protective role and regulatory mechanism of TUG1 in cardiac hypertrophy and suggested that TUG1 may serve as a novel molecular target for treating cardiac hypertrophy. 相似文献
Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment. 相似文献
Sweetness is one of the key factors determining peach fruit quality. To better understand the molecular basis of gibberellic acid (GA) and 1-naphthaleneacetic acid (NAA) interference with sugar biosynthesis, a middle-late maturing commercial cultivar, ‘Jinxiu’ yellow peach fruit, was treated with three different concentrations of GA4+7 and four of NAA. Fruit weight, firmness, total soluble solids, different sugar contents and the expression level of sugar-related genes were evaluated. The results showed that maximum increase in cv. ‘Jinxiu’ peach fruit size and sucrose content was with 1.25 mM GA4+7, compared to control fruits and the other treatments during the ripening stages. The sucrose-phosphate synthase gene (PpSPS2) which had a high level of expression and positive correlation with sucrose content was significantly regulated by 1.25 mM GA4+7 in the final ripening stages. 0.5 mM NAA treatments significantly reduced the sucrose content and fruit size. Ninety percent of the fruits were deformed or dropped from the trees with treatments of 1 mM NAA and 2 mM NAA in the early development period. The crosstalk of different phytohormones and the related genes will be further investigated to get an insight into the inherent association between hormone control and sugar accumulation.
An intra-myocardial injection of a cardiogenic factor (cardiogenin) was reported to induce myocardial regeneration of exogenous mesenchymal stem cell (MSCs) origin. In this study, replacement of the dangerous intra-myocardial injection with a safe method and whether the endogenous MSCs contribute to the cardiogenin-mediated myocardial regeneration were investigated. Bone marrow transplantation with labeled MSCs was performed in rats, which were subsequently subject to a permanent ligation of left anterior descending coronary artery one week after the transplantation. The rats were then treated with the cardiogenin through oral administration for 2 weeks. We not only demonstrated the substantial therapeutic effects of cardiogenin on myocardial infarction through an oral administration, but also provided direct evidences that the bone marrow derived endogenous MSCs are the major cellular source of the regenerating myocardium. Preliminary mechanistic studies suggested that miR-9 and its target E-cadherin may be required for intercalated disc formation. 相似文献
BackgroundDengue viruses (DENV) are the causative agents of dengue, the world’s most prevalent arthropod-borne disease with around 40% of the world’s population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia’s efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito’s ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites.Conclusions/SignificanceThe saliva-based traits reported here offer more disease-relevant measures of Wolbachia’s effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field. 相似文献