首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29295篇
  免费   2136篇
  国内免费   1642篇
  33073篇
  2024年   64篇
  2023年   351篇
  2022年   844篇
  2021年   1417篇
  2020年   975篇
  2019年   1203篇
  2018年   1178篇
  2017年   839篇
  2016年   1236篇
  2015年   1912篇
  2014年   2137篇
  2013年   2298篇
  2012年   2618篇
  2011年   2300篇
  2010年   1460篇
  2009年   1242篇
  2008年   1518篇
  2007年   1337篇
  2006年   1171篇
  2005年   981篇
  2004年   792篇
  2003年   697篇
  2002年   536篇
  2001年   480篇
  2000年   382篇
  1999年   412篇
  1998年   243篇
  1997年   266篇
  1996年   252篇
  1995年   215篇
  1994年   217篇
  1993年   150篇
  1992年   216篇
  1991年   185篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   84篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   
102.
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin produced in the K cells of the intestine and secreted into the circulating blood following ingestion of carbohydrate- and fat-containing meals. GIP contributes to the regulation of postprandial insulin secretion and is essential for normal glucose tolerance. We have established a method of assaying GIP in response to nutrients using the intestinal lymph fistula model. Administration of Ensure, a mixed-nutrient liquid meal, stimulated a significant increase in intestinal lymphatic GIP levels that were approximately threefold those of portal plasma. Following the meal, lymph GIP peaked at 60 min (P < 0.001) and remained elevated for 4 h. Intraduodenal infusions of isocaloric and isovolumetric lipid emulsions or glucose polymer induced lymph GIP concentrations that were four and seven times the basal levels, respectively. The combination of glucose plus lipid caused an even greater increase of lymph GIP than either nutrient alone. In summary, these findings demonstrated that intestinal lymph contains high concentrations of GIP that respond to both enteral carbohydrate and fat absorption. The change in lymphatic GIP concentration is greater than the change observed in the portal blood. These studies allow the detection of GIP levels at which they exert their local physiological actions. The combination of glucose and lipid has a potentiating effect in the stimulation of GIP secretion. We conclude from these studies that the lymph fistula rat is a novel approach to study in vivo GIP secretion in response to nutrient feeding in conscious rats.  相似文献   
103.
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down‐regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase‐3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl‐xl and Bcl‐2 protein levels. Over‐expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen‐activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over‐expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA‐induced cell death.

  相似文献   

104.
Acute liver failure, the fatal deterioration of liver function, is the most common indication for emergency liver transplantation, and drug-induced liver injury and viral hepatitis are frequent in young adults. Stem cell therapy has come into the limelight as a potential therapeutic approach for various diseases, including liver failure and cirrhosis. In this study, we investigated therapeutic effects of tonsil-derived mesenchymal stem cells (T-MSCs) in concanavalin A (ConA)- and acetaminophen-induced acute liver injury. ConA-induced hepatitis resembles viral and immune-mediated hepatic injury, and acetaminophen overdose is the most frequent cause of acute liver failure in the United States and Europe. Intravenous administration of T-MSCs significantly reduced ConA-induced hepatic toxicity, but not acetaminophen-induced liver injury, affirming the immunoregulatory capacity of T-MSCs. T-MSCs were successfully recruited to damaged liver and suppressed inflammatory cytokine secretion. T-MSCs expressed high levels of galectin-1 and -3, and galectin-1 knockdown which partially diminished interleukin-2 and tumor necrosis factor α secretion from cultured T-cells. Galectin-1 knockdown in T-MSCs also reversed the protective effect of T-MSCs on ConA-induced hepatitis. These results suggest that galectin-1 plays an important role in immunoregulation of T-MSCs, which contributes to their protective effect in immune-mediated hepatitis. Further, suppression of T-cell activation by frozen and thawed T-MSCs implies great potential of T-MSC banking for clinical utilization in immune-mediated disease.  相似文献   
105.
Protein tyrosine kinase Csk requires two Mg2+ ions for activity: one magnesium is part of the ATP-Mg complex, and the second free Mg2+ ion is required as an essential activator. Zn2+ can bind to this site to replace Mg2+, which inhibits Csk kinase activity. The binding is reversible and removal of Zn2+ results in an active Csk apoenzyme. In this communication, we report that this tight binding can be used as a mechanism for affinity purification of Csk. When bacterial cell lysate containing overexpressed GST-Csk was applied to a column of Zn2+-iminodiacetic acid immobilized to agarose, Csk was specifically retained by the column. Since the binding of Csk to Zn2+ is not affected by up to 200 mM NaCl, high ionic strength conditions were used in the purification procedure, minimizing nonspecific binding due to ionic interactions. Washing the column with 200 mM NaCl and 50 mM imidazole removed virtually all other proteins from the column while Csk remained bound. The retained Csk enzyme was eluted with 1 M imidazole. The 1 M imidazole-eluted fraction contained pure Csk that had a specific activity similar to the enzyme purified by a glutathione-agarose affinity column.  相似文献   
106.
Type 1 insulin-like growth factor receptor (IGF-1R) is a promising therapeutic target for cancer treatment. A single-chain variable fragment (scFv) against human IGF-1R forms inclusion body when expressed in periplasmic space of E. coli routinely. Here, we described that co-expression of appropriate disulfide bonds (Dsb) proteins known to catalyze the formation and isomerization of Dsb can markedly recover the soluble expression of target scFv in E. coli. A 50 % recovery in solubility of the scFv was observed upon co-expression of DsbC alone, and a maximum solubility (80 %) was obtained when DsbA and DsbC were co-expressed in combination. Furthermore, the soluble scFv present full antigen-binding activity with IGF-1R, suggesting its correct folding. This study also suggested that the selection of Dsb proteins should be tested case-by-case if the approach of co-expression of Dsb system is adopted to address the problem of insoluble expression of proteins carrying Dsb.  相似文献   
107.
2,3-Butanediol is one of the promising bulk chemicals with wide applications. Its fermentative production has attracted great interest due to the high end concentration. However, large-scale production of 2,3-butanediol requires low-cost substrate and efficient fermentation process. In the present study, 2,3-butanediol production by Klebsiella pneumoniae from Jerusalem artichoke tubers was successfully performed, and various technologies, including separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), were investigated. The concentration of target products reached 81.59 and 91.63 g/l, respectively after 40 h in batch and fed-batch SSF processes. Comparing with fed-batch SHF, the fed-batch SSF provided 30.3% higher concentration and 83.2% higher productivity of target products. The results showed that Jerusalem artichoke tuber is a favorable substrate for 2,3-butanediol production, and the application of fed-batch SSF for its conversion can result in a more cost-effective process.  相似文献   
108.
Aims:  To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins.
Methods and Results:  A gene ( vhhP2 ) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24  V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non- V. harveyi species, including V. parahaemolyticus and V. alginolyticus . A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2 . This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii , which is most closely related to V. harveyi . One of the V. campbellii strains was falsely identified as V. harveyi .
Conclusions:  vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non- V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi . However, this method can not distinguish some V. campbellii strains from V. harveyi .
Significance and Impact of the Study:  the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.  相似文献   
109.
110.
A series of 4-(2-pyridyl)piperazine-1-carboxamide analogues based on the lead compound 1 was synthesized and evaluated for VR1 antagonist activity in capsaicin-induced (CAP) and pH (5.5)-induced (pH) FLIPR assays in a rat VR1-expressing HEK293 cell line. Potent VR1 antagonists were identified through SAR studies. From these studies, 18 was found to be very potent in the in vitro assay [IC(50)=4.8 nM (pH) and 35 nM (CAP)] and orally available in rat (F%=15.1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号