首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   41篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   16篇
  2014年   18篇
  2013年   28篇
  2012年   22篇
  2011年   33篇
  2010年   20篇
  2009年   11篇
  2008年   17篇
  2007年   18篇
  2006年   12篇
  2005年   20篇
  2004年   18篇
  2003年   15篇
  2002年   15篇
  2001年   8篇
  2000年   9篇
  1999年   2篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1992年   3篇
  1991年   10篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1979年   6篇
  1978年   4篇
  1977年   2篇
  1976年   9篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1967年   1篇
排序方式: 共有417条查询结果,搜索用时 62 毫秒
11.
12.
Studies on the microbial ecology of gut microbiota in bats are limited and such information is necessary in determining the ecological significance of these hosts. Short-nosed fruit bats (Cynopterus brachyotis brachyotis) are good candidates for microbiota studies given their close association with humans in urban areas. Thus, this study explores the gut microbiota of this species from Peninsular Malaysia by means of biochemical tests and 16S rRNA gene sequences analysis. The estimation of viable bacteria present in the stomach and intestine of C. b. brachyotis ranged from 3.06 × 1010 to 1.36 × 1015 CFU/ml for stomach fluid and 1.92 × 1010 to 6.10 × 1015 CFU/ml for intestinal fluid. A total of 34 isolates from the stomach and intestine of seven C. b. brachyotis were retrieved. A total of 16 species of bacteria from eight genera (Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, Pseudomonas and Serratia) were identified, Enterobacteriaceae being the most prevalent, contributing 12 out of 16 species isolated. Most isolates from the Family Enterobacteriaceae have been reported as pathogens to humans and wildlife. With the possibility of human wildlife transmission, the findings of this study focus on the importance of bats as reservoirs of potential bacterial pathogens.  相似文献   
13.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   
14.
15.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   
16.
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.  相似文献   
17.
Plants use the family of phytochrome photoreceptors to sense their light environment in the red/far-red region of the spectrum. Phytochrome A (phyA) is the primary photoreceptor that regulates germination and early seedling development. This phytochrome mediates seedling de-etiolation for the developmental transition from heterotrophic to photoauxotrophic growth. High intensity far-red light provides a way to specifically assess the role of phyA in this process and was used to isolate phyA-signaling intermediates. fhy1 and pat3 (renamed fhy1-3) are independently isolated alleles of a gene encoding a phyA signal transduction component. FHY1 is a small 24 kDa protein that shows no homology to known functional motifs, besides a small conserved septin-related domain at the C-terminus, a putative nuclear localization signal (NLS) and a putative nuclear exclusion signal (NES). Here we demonstrate that the septin-related domain is important for FHY1 to transmit phyA signals. Moreover, the putative NLS and NES of FHY1 are indeed involved in its nuclear localization and exclusion. Nuclear localization of FHY1 is needed for it to execute responses downstream of phyA. Together with the results from global expression analysis, our findings point to an important role of FHY1 in phyA signaling through its nuclear translocation and induction of gene expression.  相似文献   
18.
19.
Structure-function analysis of the bestrophin family of anion channels   总被引:12,自引:0,他引:12  
The bestrophins are a newly described family of anion channels unrelated in primary sequence to any previously characterized channel proteins. The human genome codes for four bestrophins, each of which confers a distinctive plasma membrane conductance on transfected 293 cells. Extracellular treatment with methanethiosulfonate ethyltrimethylammonium (MTSET) of a series of substitution mutants that eliminate one or more cysteines from human bestrophin1 demonstrates that cysteine 69 is the single endogenous cysteine responsible for MTSET inhibition of whole-cell current. Cysteines introduced between positions 78-99 and 223-226 are also accessible to external MTSET, with MTSET modification at positions 79, 80, 83, and 90 producing a 2-6-fold increase in whole-cell current. The latter set of four cysteine-substitution mutants define a region that appears to mediate allosteric control of channel activity. Mapping of transmembrane topography by insertion of N-linked glycosylation sites and tobacco etch virus protease cleavage sites provides evidence for cytosolic N and C termini and an unexpected transmembrane topography with at least three extracellular loops that include positions 60-63, 212-227, and 261-267. These experiments provide the first structural analysis of the bestrophin channel family.  相似文献   
20.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号