首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  159篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2016年   2篇
  2015年   4篇
  2014年   12篇
  2013年   13篇
  2012年   10篇
  2011年   10篇
  2010年   4篇
  2009年   6篇
  2008年   17篇
  2007年   14篇
  2006年   3篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
61.
Multiple system atrophy is a neurodegenerative disease caused by abnormal α-synuclein (α-syn) accumulation in oligodendrocytes and neurons. We previously demonstrated that transgenic (Tg) mice that selectively overexpressed human α-syn in oligodendrocytes exhibited neuronal α-syn accumulation. Microtubule β-III tubulin binds to endogenous neuronal α-syn to form an insoluble complex, leading to progressive neuronal degeneration. α-Syn accumulation is increased in the presynaptic terminals of Tg mice neurons and may reduce neurotransmitter release. To clarify the mechanisms underlying its involvement in neuronal dysfunction, in the present study, we investigated the effects of neuronal α-syn accumulation on synaptic function in Tg mice. Using whole-cell patch-clamp recording, we found that the frequency of miniature inhibitory postsynaptic currents was reduced in Tg mice. Furthermore, a microtubule depolymerizing agent restored normal frequencies of miniature inhibitory postsynaptic currents in Tg mice. These findings suggest that α-syn and β-III tubulin protein complex plays roles for regulation of synaptic vesicle release in GABAergic interneurons, and it causes to reduce GABAergic inhibitory transmission.  相似文献   
62.
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.  相似文献   
63.
Super-growing roots (superroots; SR), which have been established in the legume species Lotus corniculatus, are a fast-growing root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique for non-hairy root cultures, and they are now stably expressed since the culture was isolated more than 10 years ago (1997). Attempts to achieve direct and stable transformation of SR turned out to be unsuccessful. Making use of the supple regeneration plasticity of SR, we are reporting here an indirect transformation protocol. Leaf explants, derived from plants regenerated from SR, were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pBI121, which contains the neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes as selectable and visual markers, respectively. After co-cultivation, the explants were selected on solidified MS medium with 0.5mg/L benzylamino purine (BAP), 100mg/L kanamycin and 250mg/L cefotaxime. Kanamycin-resistant calli were transferred to liquid rooting medium. The newly regenerated, kanamycin-resistant roots were harvested and SR cultures re-established, which exhibited all the characteristics of the original SR. Furthermore, kanamycin-resistant roots cultured onto solidified MS medium supplemented with 0.5mg/L BAP produced plants at the same rate as control SR. Six months after gene transfer, PCR analysis and histochemical locating indicated that the NPTII gene was integrated into the genome and that the GUS gene was regularly expressed in leaves, roots and nodules, respectively. The protocol makes it now possible to produce transformed SR and nodules as well as transgenic plants from transformed SR.  相似文献   
64.
65.
Mass spectral measurements by electrospray ionization mass spectrometry (ESI-MS) detected the ions of beta-cyclodextrin (betaCD) or branched betaCDs (glucosyl-, galactosyl-, mannosyl- and maltosyl-betaCD)-prostaglandins (PGs: PGA(2), PGD(2), PGE(1), PGE(2), PGF(2alpha) and PGJ(2)) complexes, i.e., betaCD-PG complexes, with a host:guest ratio of 1:1 in the negative ion mode. This is the first study to report the ions of branched betaCD-PG complexes using ESI-MS. The inclusion complexes were determined by a flow injection analysis using acetonitrile/water. We could confirm by this method the presence of a betaCD-PGE(2) complex with a host:guest ratio of 1:1 in a solution-dissolved pharmaceutical formulation consisting of betaCD-PGE(2) (Prostarmon E tablet).  相似文献   
66.
After invasion into intercellular spaces of tomato plants, the soil‐borne, plant‐pathogenic Ralstonia solanacearum strain OE1‐1 forms mushroom‐shaped biofilms (mushroom‐type biofilms, mBFs) on tomato cells, leading to its virulence. The strain OE1‐1 produces aryl‐furanone secondary metabolites, ralfuranones (A, B, J, K and L), dependent on the quorum sensing (QS) system, with methyl 3‐hydroxymyristate (3‐OH MAME) synthesized by PhcB as a QS signal. Ralfuranones are associated with the feedback loop of the QS system. A ralfuranone productivity‐deficient mutant (ΔralA) exhibited significantly reduced growth in intercellular spaces compared with strain OE1‐1, losing its virulence. To analyse the function of ralfuranones in mBF formation by OE1‐1 cells, we observed cell aggregates of R. solanacearum strains statically incubated in tomato apoplast fluids on filters under a scanning electron microscope. The ΔralA strain formed significantly fewer microcolonies and mBFs than strain OE1‐1. Supplementation of ralfuranones A, B, J and K, but not L, significantly enhanced the development of mBF formation by ΔralA. Furthermore, a phcB‐ and ralA‐deleted mutant (ΔphcB/ralA) exhibited less formation of mBFs than OE1‐1, although a QS‐deficient, phcB‐deleted mutant formed mBFs similar to OE1‐1. Supplementation with 3‐OH MAME significantly reduced the formation of mBFs by ΔphcB/ralA. The application of each ralfuranone significantly increased the formation of mBFs by ΔphcB/ralA supplied with 3‐OH MAME. Together, our findings indicate that ralfuranones are implicated not only in the development of mBFs by strain OE1‐1, but also in the suppression of QS‐mediated negative regulation of mBF formation.  相似文献   
67.
Multiple system atrophy (MSA) is a neurodegenerative disease caused by α-synuclein aggregation in oligodendrocytes and neurons. Using a transgenic mouse model overexpressing human α-synuclein in oligodendrocytes, we previously demonstrated that oligodendrocytic α-synuclein inclusions induce neuronal α-synuclein accumulation and progressive neuronal degeneration. α-Synuclein binds to β-III tubulin, leading to the neuronal accumulation of insoluble α-synuclein in an MSA mouse model. The present study demonstrates that α-synuclein co-localizes with β-III tubulin in the brain tissue from patients with MSA and MSA model transgenic mice as well as neurons cultured from these mice. Accumulation of insoluble α-synuclein in MSA mouse neurons was blocked by the peptide fragment β-III tubulin (residues 235–282). We have determined the α-synuclein-binding domain of β-III tubulin and demonstrated that a short fragment containing this domain can suppress α-synuclein accumulation in the primary cultured cells. Administration of a short α-synuclein-binding fragment of β-III tubulin may be a novel therapeutic strategy for MSA.  相似文献   
68.
The epithelium of mucosal and skin surfaces serves as a permeability barrier and affords mechanisms for local immune defense. Crucial to the development and maintenance of a properly functioning epithelium is the balance of cell proliferation, differentiation, and death. Here we show that this balance depends on cross-regulatory interactions among multiple protein kinase-mediated signals and their coordinated transmission. From an investigation of conditional gene knock-out mice, we find that epithelial-specific loss of the protein kinase p38α leads to aberrant activation of TAK1, JNK, EGF receptor, and ERK in distinct microanatomical areas of the intestines and skin. Consequently, the epithelial tissues display excessive proliferation, inadequate differentiation, and sensitivity to apoptosis. These anomalies leave the tissue prone to damage and collapse at the trigger of an environmental insult. The vulnerability of p38α-deficient epithelium predicts adverse effects of long term pharmacological p38α inhibition; yet such limitations could be overcome by concomitant blockade of one or more of the dysregulated protein kinase signaling pathways.  相似文献   
69.
Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.  相似文献   
70.
The Rab3 family small G proteins (Rab3A-D) are involved in the regulated secretory pathway of brain and secretory tissues. Among Rab3-interacting proteins, Rabphilin-3, Rim, and Noc2, all of which contain a conserved Rab3-binding domain (RBD3), are generally recognized Rab3 effector proteins in neurons and secretory cells. Although Rab3B was also detected in epithelial cells, its function remained unknown. We isolated cDNA sequences from human epithelial Caco2-cell mRNA by degenerate RT-PCR based on the conserved amino acid sequence of RBD3. Multiple cDNA clones were identified as encoding Noc2. Northern blot analysis revealed that Noc2 mRNA was expressed not only in secretory tissues but also in epithelial tissues and cell lines. A pull-down assay demonstrated that Noc2 bound to Rab3B in a GTP-dependent manner. When Noc2 was co-expressed with the GTP-bound form of Rab3B, it was recruited from the cytosol to perinuclear membranes. Furthermore, overexpression of Noc2 inhibited the cell-surface transport of basolateral vesicular stomatitis virus glycoprotein. These results suggest that Noc2 functions as a potential Rab3B effector protein in epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号