首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2704篇
  免费   185篇
  2889篇
  2022年   15篇
  2021年   26篇
  2020年   15篇
  2019年   29篇
  2018年   26篇
  2017年   29篇
  2016年   45篇
  2015年   69篇
  2014年   79篇
  2013年   217篇
  2012年   119篇
  2011年   134篇
  2010年   66篇
  2009年   80篇
  2008年   122篇
  2007年   143篇
  2006年   140篇
  2005年   123篇
  2004年   116篇
  2003年   116篇
  2002年   104篇
  2001年   75篇
  2000年   75篇
  1999年   79篇
  1998年   29篇
  1997年   22篇
  1996年   16篇
  1994年   22篇
  1993年   21篇
  1992年   55篇
  1991年   66篇
  1990年   40篇
  1989年   39篇
  1988年   53篇
  1987年   33篇
  1986年   45篇
  1985年   41篇
  1984年   22篇
  1983年   32篇
  1982年   17篇
  1981年   22篇
  1980年   20篇
  1979年   29篇
  1978年   15篇
  1977年   20篇
  1974年   24篇
  1973年   22篇
  1972年   15篇
  1971年   15篇
  1968年   15篇
排序方式: 共有2889条查询结果,搜索用时 0 毫秒
51.
The hem gene cluster, which consists of hemA, cysG(B), hemC, hemD, hemB, and hemL genes, and encodes enzymes involved in the biosynthetic pathway from glutamyl-tRNA to uroporphyrinogen III, has been identified by the cloning and sequencing of two overlapping DNA fragments from Clostridium perfringens NCTC8237. The deduced amino acid sequence of the N-terminal region of C. perfringens HemD is homologous to those reported for the C-terminal region of Salmonella typhimurium CysG and Clostridium josui HemD. C. perfringens CysG(B) is a predicted 220-residue protein which shows homology to the N-terminal region of S. typhimurium CysG. Disruption of the cysG(B) gene in C. perfringens strain 13 by homologous recombination reduced cobalamin (vitamin B12) levels by a factor of 200. When grown in vitamin B12-deficient medium, the mutant strain showed a four-fold increase in its doubling time compared with that of the wild-type strain, and this effect was counteracted by supplementing the medium with vitamin B12. These results suggest that C. perfringens CysG(B) is involved in the chelation of cobalt to precorrin II as suggested for the CysG(B) domain of S. typhimurium CysG, enabling the synthesis of cobalamin.  相似文献   
52.
Niche regulation of corneal epithelial stem cells at the limbus   总被引:19,自引:0,他引:19  
Among all adult somatic stem cells,those of the corneal epithelium are unique in their exclusive location in a definedlimbai structure termed Palisades of Vogt.As a result,surgical engraftment oflimbal epithelial stem cells with or withoutex vivo expansion has long been practiced to restore sights in patients inflicted with limbal stem cell deficiency.Neverthe-less,compared to other stem cell examples,relatively little is known about the limbal niche,which is believed to play apivotal role in regulating self-renewal and fate decision of limbal epithelial stem cells.This review summarizes relevantliterature and formulates several key questions to guide future research into better understanding of the pathogenesis oflimbal stem cell deficiency and further improvement of the tissue engineering of the corneal epithelium by focusing onthe limbal niche.  相似文献   
53.
This paper reports the characterization of an alkaline phosphatase (AP) from an aerobic hyperthermophilic Archaeon Aeropyrum pernix K1. The native AP was purified into homogeneity. The enzyme is predicted as a homodimeric structure with a native molecular mass of about 75 kDa and monomer of about 40 kDa. Apparent optimum pH and temperature were estimated at 10.0 and above 95°C, respectively. Magnesium ion increased both the stability and the activity of the enzyme. A. pernix AP has been demonstrated as a very thermostable AP, retaining about 76% of its activity after being incubated at 90°C for 5.5 h and 67% of its activity after being incubated at 100°C for 2.5 h, respectively, under the presence of Mg(II). Enzyme activity was increased in addition of exogenous Mg(II), Ca(II), Zn(II), and Co(II).  相似文献   
54.
NO, a free radical gas, is known to be critically involved not only in vascular relaxation but also in host defense. Besides direct bactericidal effects, NO has been shown to inhibit Th1 responses and modulate immune responses in vivo, although the precise mechanism is unclear. In this study, we examined the effect of NO on human plasmacytoid dendritic cells (pDCs) to explore the possibility that NO might affect innate as well as adaptive immunity through pDCs. We found that NO suppressed IFN-alpha production of pDCs partly via a cGMP-dependent mechanism, which was accompanied by down-regulation of IFN regulatory factor 7 expression. Furthermore, treatment of pDCs with NO decreased production of IL-6 and TNF-alpha and up-regulated OX40 ligand expression. In accordance with these changes, pDCs treated with NO plus CpG-oligodeoxynucleotide AAC-30 promoted differentiation of naive CD4(+) T cells into a Th2 phenotype. Moreover, pDCs did not express inducible NO synthase even after treatment with AAC-30, LPS, and several cytokines. These results suggest that exogenous NO and its second messenger, cGMP, alter innate as well as adaptive immune response through modulating the functions of pDCs and may be involved in the pathogenesis of certain Th2-dominant allergic diseases.  相似文献   
55.
Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides   总被引:1,自引:0,他引:1  
  相似文献   
56.
Pseudomonas cichorii is the major causal agent of bacterial rot of lettuce. Collapse and browning symptoms were observed in lettuce leaf tissue from 15 to 24 h after inoculation (HAI) with P. cichorii; superoxide anion generation was detected at 1 to 6 HAI; and cell death was induced at 6 HAI, reaching a maximum at approximately 9 and 12 HAI. Heterochromatin condensation and DNA laddering also were observed within 3 HAI. Pharmacological studies showed that induction of cell death and DNA laddering was closely associated with de novo protein synthesis, protein kinase, intracellular reactive oxygen species, DNase, serine protease, and caspase III-like protease. Moreover, chemicals, which inhibited the induction of cell death and DNA laddering, also suppressed the development of disease symptoms. These results suggest that apoptotic cell death might be closely associated with the development of bacterial rot caused by P. cichorii.  相似文献   
57.
The primary structure of the N-linked sugar chain of Rhizopus niveus glucoamylase (major component) was investigated. The carbohydrate moiety was released from the polypeptide backbone by Flavobacterium sp. endo-beta-N-acetylglucosaminidase digestion. Studies using the method of exoglycosidase digestion of the fluorescent pyridylamino derivative, gel-permeation chromatography on Bio-Gel P-4 and 400-MHz 1H-NMR spectroscopy revealed that the most abundant structure is (Man)8-GlcNac-ol.  相似文献   
58.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
59.
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号