首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2684篇
  免费   126篇
  国内免费   4篇
  2814篇
  2022年   13篇
  2021年   14篇
  2019年   12篇
  2018年   19篇
  2017年   21篇
  2016年   23篇
  2015年   43篇
  2014年   47篇
  2013年   208篇
  2012年   109篇
  2011年   149篇
  2010年   85篇
  2009年   103篇
  2008年   171篇
  2007年   161篇
  2006年   159篇
  2005年   166篇
  2004年   167篇
  2003年   183篇
  2002年   184篇
  2001年   25篇
  2000年   16篇
  1999年   47篇
  1998年   58篇
  1997年   38篇
  1996年   41篇
  1995年   33篇
  1994年   32篇
  1993年   44篇
  1992年   40篇
  1991年   23篇
  1990年   31篇
  1989年   22篇
  1988年   20篇
  1987年   13篇
  1986年   29篇
  1985年   18篇
  1984年   20篇
  1983年   19篇
  1982年   16篇
  1981年   24篇
  1980年   20篇
  1979年   19篇
  1978年   11篇
  1977年   12篇
  1976年   17篇
  1975年   18篇
  1974年   15篇
  1973年   12篇
  1965年   5篇
排序方式: 共有2814条查询结果,搜索用时 15 毫秒
161.
Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca2+-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment.  相似文献   
162.
Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23 000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis . This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.  相似文献   
163.
The mitochondrial inner membrane typically shows a condensed structure when examined by electron microscopy. However, this typical structure is known to disappear upon induction of the mitochondrial permeability transition (PT). This change in the appearance of the mitochondrial membrane structure that accompanies the induction of PT is thought to reflect changes in the permeability of inner mitochondrial membrane; however, its molecular basis has remained uncertain. In the present study, changes in membrane status were examined by immuno-electron microscopy using antibodies against the voltage-dependent anion channel (VDAC), beta-subunit of F1-ATPase (F1beta), and cytochrome c (cyt. c). In control mitochondria, antibody against VDAC was observed at the rim of the mitochondria, whereas antibodies against F1beta and cytochrome c bound these molecules inside of the mitochondria. However, in PT-induced mitochondria, all three antibodies were observed at the mitochondrial rim. These results strongly suggest that the inner mitochondrial membrane is shoved to the rim region of mitochondria upon induction of mitochondrial PT.  相似文献   
164.
165.
We have identified an enhancer responsible for induction by 3-methylcholanthrene in the upstream region of the CYP1A2 gene. The enhancer does not contain the invariant core sequence of XREs that are binding sites for the Ah receptor (AhR) and Arnt heterodimer. The enhancer did not show any inducible expression in Hepa-1-derived cell lines, C4 and C12, deficient of Arnt and AhR, respectively. On the other hand, bacterially expressed AhR-Arnt heterodimer could not bind to the enhancer. Mutational analysis of the enhancer revealed that a repeated sequence separated by six nucleotides is important for expression. A factor binding specifically to the enhancer was found by using gel shift assays. Bacterially expressed AhR-Arnt heterodimer interacted with the factor. A dominant negative mutant of the AhR to XRE activated the enhancer. Collectively, these results demonstrate that a novel induction mechanism is present in which the AhR-Arnt heterodimer functions as a coactivator.  相似文献   
166.
Liver infection is an obligatory step in malarial transmission, but it remains unclear how the sporozoites gain access to the hepatocytes, which are separated from the circulatory system by the liver sinusoidal cell layer. We found that a novel microneme protein, named sporozoite microneme protein essential for cell traversal (SPECT), is produced by the liver-infective sporozoite of the rodent malaria parasite, Plasmodium berghei. Targeted disruption of the spect gene greatly reduced sporozoite infectivity to the liver. In vitro cell invasion assays revealed that these disruptants can infect hepatocytes normally but completely lack their cell passage ability. Their apparent liver infectivity was, however, restored by depletion of Kupffer cells, hepatic macrophages included in the sinusoidal cell layer. These results show that malarial sporozoites access hepatocytes through the liver sinusoidal cell layer by cell traversal motility mediated by SPECT and strongly suggest that Kupffer cells are main routes for this passage. Our findings may open the way for novel malaria transmission-blocking strategies that target molecules involved in sporozoite migration to the hepatocyte.  相似文献   
167.
Actinoplanes missouriensis Couch 1963 is a well-characterized member of the genus Actinoplanes, which is of morphological interest because its members typically produce sporangia containing motile spores. The sporangiospores are motile by means of flagella and exhibit chemotactic properties. It is of further interest that members of Actinoplanes are prolific sources of novel antibiotics, enzymes, and other bioactive compounds. Here, we describe the features of A. missouriensis 431T, together with the complete genome sequence and annotation. The 8,773,466 bp genome contains 8,125 protein-coding and 79 RNA genes.  相似文献   
168.
Exogenous nitric oxide (NO) suppresses endothelium-derived NO production. We were interested in determining whether this is also the case in flow-induced endothelium-derived NO production. If so, then is the mechanism because of intracellular depletion of tetrahydrobiopterin [BH4; a cofactor of NO synthase (NOS)], which results in superoxide production by uncoupled NOS? Isolated canine femoral arteries were perfused with 100 microM S-nitroso-N-acetylpenicillamine (SNAP; an NO donor) and/or 64 microM BH4. Perfusion of SNAP suppressed flow-induced NO production, which was evaluated as a change in the slope of the linear relationship between perfusion rate and NO production rate (P < 0.02 vs. control; n = 7). Subsequent BH4 perfusion returned the slope to the control level. Concomitant perfusion of SNAP and BH4 retained the control-level NO production (n = 7). Concomitant perfusion of SNAP and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; 1 mM; a membrane-permeable superoxide scavenger) also retained the control-level NO production (n = 7), whereas perfusion of Tiron after SNAP could not return the NO production to the control level (P < 0.02 vs. control; n = 7). We also found a significant decrease in BH4 concentration in the endothelial cells after SNAP perfusion. In conclusion, these results indicate that exogenous NO suppresses the flow-induced, endothelium-derived NO production by superoxide released from uncoupled NOS because of intracellular BH4 depletion.  相似文献   
169.
Fungal aldoxime dehydratase (Oxd) of Fusarium graminearum MAFF305135 was purified and characterized for the first time from its overexpressing Escherichia coli transformant. The enzyme showed about 20% identity with known Oxds, and had similar enzymatic properties with nitrilase-linked Oxd from the Bacillus strain. It belongs to a group of phenylacetaldoxime dehydratases (EC 4.99.1.7), based on its substrate specificity and kinetic analysis.  相似文献   
170.
During a study on the effect of DL-serine hydroxamate on Corynebacterium glutamicum (JCM1318, a wild strain), a mutant resistant to the drug, strain TO3002, was isolated. This mutant accumulated five Ehrlich's reagent positive fluorescent substances in the culture medium. Two major and one minor fluorescent products were isolated by preparative high-performance liquid chromatography following charcoal column chromatography from the culture supernatant. One major product was identified as anthranilic acid whose molecular ion was confirmed to be 137 by a measurement of liquid chromatography-mass spectrometry (LC-MS), and NMR spectrum coincided with that of anthranilic acid. LC-MS spectra of another major and the minor product showed that they had the same molecular weight of 299. This major product was supported to be N-glucosylanthranilic acid (N-o-carboxyphenyl-1-beta-glucosylamine) by two-dimensional (1)H and (13)C NMR analyses. The minor product was speculated to be an Amadori compound derived from N-glucosylanthranilic acid. N-Glucosylanthranilic acid accumulated in the early phase, then decreased in the late phase of the culture. In contrast, the accumulation of anthranilic acid increased remarkably in the late phase of the fermentation. Based on this phenomenon, it was assumed that N-glucosylanthranilic acid once accumulated was decomposed to form anthranilic acid, at least in large part, with the progress of fermentation. The strain TO3002 showed a leaky requirement for L-tryptophan or indole (but did not for anthranilic acid) and resistance to DL-serine hydroxamate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号