首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   145篇
  国内免费   4篇
  2022年   13篇
  2021年   18篇
  2019年   12篇
  2018年   21篇
  2017年   26篇
  2016年   28篇
  2015年   54篇
  2014年   53篇
  2013年   223篇
  2012年   125篇
  2011年   169篇
  2010年   95篇
  2009年   117篇
  2008年   192篇
  2007年   181篇
  2006年   178篇
  2005年   180篇
  2004年   184篇
  2003年   205篇
  2002年   199篇
  2001年   44篇
  2000年   26篇
  1999年   62篇
  1998年   60篇
  1997年   39篇
  1996年   44篇
  1995年   35篇
  1994年   35篇
  1993年   44篇
  1992年   44篇
  1991年   29篇
  1990年   37篇
  1989年   24篇
  1988年   28篇
  1987年   19篇
  1986年   36篇
  1985年   19篇
  1984年   24篇
  1983年   22篇
  1982年   18篇
  1981年   25篇
  1980年   20篇
  1979年   22篇
  1978年   12篇
  1977年   12篇
  1976年   16篇
  1975年   18篇
  1974年   19篇
  1973年   12篇
  1965年   6篇
排序方式: 共有3167条查询结果,搜索用时 15 毫秒
161.
P-glycoprotein (P-gp) is a 170 kDa membrane protein that belongs to the ATP-binding cassette (ABC) transporter superfamily. In normal tissues, P-gp functions as an ATP-dependent efflux pump that excretes highly hydrophobic xenobiotic compounds, playing an important role in protecting the cells/tissues from xenobiotics. In the present study, chemical substances that could directly modulate the intestinal P-gp activity were searched in vegetables and fruits. By using human intestinal epithelial Caco-2 cells as a model of the small intestinal cells, we observed that a bitter melon fraction extracted from 40% methanol showed the greatest increase of the rhodamine-123 accumulation by Caco-2 cells. Inhibitory compounds in the bitter melon fraction were then isolated by HPLC using Pegasil C4 and Pegasil ODS columns. The HPLC fraction having the highest activity was analyzed by (1)H-NMR and FAB-MS, and the active compound was identified as 1-monopalmitin. It is interesting that certain types of monoglyceride might be involved in the drug bioavailability by specifically inhibiting the efflux mediated by P-gp.  相似文献   
162.
163.
Pecot MY  Malhotra V 《Cell》2004,116(1):99-107
What happens to organelles during mitosis, and how they are apportioned to each of the daughter cells, is not completely clear. We have devised a procedure to address whether Golgi membranes fuse with the Endoplasmic Reticulum (ER) during mitosis via the detection of interactions between ER and Golgi proteins. This procedure involves coexpressing an FKBP-tagged Golgi enzyme with an ER-retained protein fused to FRAP in COS cells. Since treatment with rapamycin induces a tight association between FKBP and FRAP, one would expect rapamycin to trap the FKBP-fused Golgi protein in the ER if it ever visits the ER during mitosis. However, after the doubly transfected cells progress through mitosis in the presence of rapamycin, we find the Golgi protein in the newly formed Golgi stacks and not in the ER. Based on these results, we conclude that Golgi membranes remain separate from the ER during mitosis in mammalian cells.  相似文献   
164.
Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca2+-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment.  相似文献   
165.
We investigated the plasma concentration of ghrelin peptide during pregnancy and lactation in rats. Plasma ghrelin levels on days 10 and 15 of pregnancy were significantly lower than those of the non-pregnant rats. Thereafter, the plasma ghrelin levels on day 20 of pregnancy sharply increased to levels comparable with those in non-pregnant rats. Ghrelin peptide concentrations in the stomach did not change significantly during pregnancy. In the hypothalamus, ghrelin mRNA levels were significantly lower on day 15 of pregnancy than in the non-pregnant rats. Also, plasma ghrelin levels were significantly lower in lactating dams than non-lactating controls on days 3 and 8 of lactation. We examined the possible involvement of prolactin and oxytocin in the regulation of plasma ghrelin concentrations during lactation. Although plasma prolactin levels were decreased by the administration of bromocriptine, plasma ghrelin levels did not differ significantly between vehicle- and drug-treated lactating rats. Administration of haloperidol produced a marked increase in plasma prolactin levels as compared with the non-lactating controls. However, plasma ghrelin levels were not significantly different between vehicle- and drug-treated rats. Administration of an oxytocin antagonist into the lateral ventricle significantly inhibited the increase in the plasma oxytocin level induced by acute suckling. However, plasma ghrelin levels did not significantly between the groups. These observations indicated that the decrease in serum ghrelin is caused by a loss of the contribution of hypothalamic ghrelin. Furthermore, the present results suggested that the suckling stimulus itself, but the release of prolactin or oxytocin, is the factor most likely to be responsible for the suppression of ghrelin secretion during lactation.  相似文献   
166.
Carbonic anhydrase (CA) in the inner ear sacculus was examined by activity assay, Western blotting and immunohistochemistry to determine its role in otolith calcification. An immunoreactive protein with a molecular mass of approximately 28 kDa was detected by Western blotting. The CO2 hydration activity in the cytosol fraction of the sacculus was 5.4 units/mg protein, while little or no activity was detected in the nuclear and mitochondrial fractions. The enzyme activity was highly inhibited by acetazolamide. The concentration of 50% inhibition was 8.16 nM and the inhibition constant of the activity was 8.25 nM. Transitional and squamous epithelial cells of the sacculus were immunopositive with an anti-CA II antibody, but sensory epithelial cells and mitochondria-rich cells in the transitional epithelium were not. These results suggest that transitional epithelial cells other than mitochondria-rich cells and squamous epithelial cells play an important role in otolith calcification by supplying bicarbonate to otoliths and/or by eliminating protons from endolymph.  相似文献   
167.
Liver infection is an obligatory step in malarial transmission, but it remains unclear how the sporozoites gain access to the hepatocytes, which are separated from the circulatory system by the liver sinusoidal cell layer. We found that a novel microneme protein, named sporozoite microneme protein essential for cell traversal (SPECT), is produced by the liver-infective sporozoite of the rodent malaria parasite, Plasmodium berghei. Targeted disruption of the spect gene greatly reduced sporozoite infectivity to the liver. In vitro cell invasion assays revealed that these disruptants can infect hepatocytes normally but completely lack their cell passage ability. Their apparent liver infectivity was, however, restored by depletion of Kupffer cells, hepatic macrophages included in the sinusoidal cell layer. These results show that malarial sporozoites access hepatocytes through the liver sinusoidal cell layer by cell traversal motility mediated by SPECT and strongly suggest that Kupffer cells are main routes for this passage. Our findings may open the way for novel malaria transmission-blocking strategies that target molecules involved in sporozoite migration to the hepatocyte.  相似文献   
168.
169.
Time-sequential responses to endothelium-dependent and -independent vasodilators and angiotensin-converting enzyme (ACE) inhibitors were studied in the subendocardial arterioles (Endo) of canine renovascular hypertension (HT) compared with subepicardial arterioles (Epi; both <120 microm) by charge-coupled device intravital microscope. Vascular responses to acetylcholine, papaverine, and cilazaprilat were compared between normotensive (NT) and HT dogs [4 wk and 12 wk of HT (4wHT and 12wHT)]. The acetylcholine-induced vasodilation of Endo in both 4wHT and 12wHT was smaller than that of NT (both P < 0.01 vs. 4wHT and 12wHT), and that of Epi was smaller than that of NT only in 12wHT (P < 0.05). The papaverine-induced vasodilation of Endo, but not Epi, was impaired only in 12wHT (both P < 0.01 vs. NT and 4wHT). Vasodilation by cilazaprilat remained unchanged at 4wHT and 12wHT in both Epi and Endo. In conclusion, at the early stage, the endothelium-dependent response of Endo was impaired, whereas at the later stage, the endothelium-dependent and -independent responses of Endo and the endothelium-dependent response of Epi were impaired. However, the vasodilatory responses to the ACE inhibitor were maintained in both Endo and Epi of HT.  相似文献   
170.
Temocapril, a angiotensin-converting enzyme (ACE) inhibitor, was tested for neurotrophic activity in primary explant cultures of ventral spinal cord of fetal rats (VSCC). Temocapril had a remarkable effect on neurite outgrowth with a 4.2- to 5.1-fold increased over that of control VSCC at their effective concentrations. In temocapril-treated VSCC, choline acetyltransferase (ChAT) activity was also increased 2.4–3.2 times over that of control at 10–9 and 10–8 M, respectively. Our data suggest that temocapril is a candidate for neurotrophic factors on spinal motor neurons in vitro. A possible therapeutic role for temocapril in damaged motor neurons, such as in motor neuropathy and amyotrophic lateral sclerosis, remains to be defined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号