首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1445篇
  免费   74篇
  1519篇
  2023年   3篇
  2022年   9篇
  2021年   17篇
  2020年   7篇
  2019年   15篇
  2018年   21篇
  2017年   19篇
  2016年   25篇
  2015年   53篇
  2014年   56篇
  2013年   68篇
  2012年   93篇
  2011年   85篇
  2010年   65篇
  2009年   62篇
  2008年   111篇
  2007年   104篇
  2006年   81篇
  2005年   79篇
  2004年   92篇
  2003年   91篇
  2002年   86篇
  2001年   13篇
  2000年   22篇
  1999年   13篇
  1998年   17篇
  1997年   15篇
  1996年   12篇
  1995年   15篇
  1994年   18篇
  1993年   11篇
  1992年   13篇
  1991年   14篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   3篇
  1986年   8篇
  1985年   5篇
  1984年   10篇
  1983年   7篇
  1982年   13篇
  1981年   7篇
  1980年   5篇
  1978年   4篇
  1976年   2篇
  1975年   6篇
  1974年   6篇
  1973年   2篇
  1971年   3篇
排序方式: 共有1519条查询结果,搜索用时 11 毫秒
91.
Visceral fat adiposity plays an important role in the development of metabolic syndrome. We reported previously the impact of human visceral fat adiposity on gene expression profile of peripheral blood cells. Genes related to circadian rhythm were highly associated with visceral fat area and period homolog 1 (PER1) showed the most significant negative correlation with visceral fat area. However, regulation of adipose Per1 remains poorly understood. The present study was designed to understand the regulation of Per1 in adipose tissues. Adipose Per1 mRNA levels of ob/ob mice were markedly low at 25 and 35 weeks of age. The levels of other core clock genes of white adipose tissues were also low in ob/ob mice at 25 and 35 weeks of age. Per1 mRNA was mainly expressed in the mature adipocyte fraction (MAF) and it was significantly low in MAF of ob/ob mice. To examine the possible mechanisms, 3T3-L1 adipocytes were treated with H2O2, tumor necrosis factor-α (TNF-α), S100A8, and lipopolysaccharide (LPS). However, no significant changes in Per1 mRNA level were observed by these agents. Exposure of cultured 3T3-L1 adipocytes to low temperature (33°C) decreased Per1 and catalase, and increased monocyte chemoattractant protein-1 (Mcp-1) mRNA levels. Hypothermia also worsened insulin-mediated Akt phosphorylation in 3T3-L1 adipocytes. Finally, telemetric analysis showed low temperature of adipose tissues in ob/ob mice. In obesity, adipose hypothermia seems to accelerate adipocyte dysfunction.  相似文献   
92.
Cell junctions and the extracellular matrix (ECM) are crucial components in intercellular communication. These systems are thought to have become highly diversified during the course of vertebrate evolution. In the present study, we have examined whether the ancestral chordate already had such vertebrate systems for intercellular communication, for which we have searched the genome of the ascidian Ciona intestinalis. From this molecular perspective, the Ciona genome contains genes that encode protein components of tight junctions, hemidesmosomes and connexin-based gap junctions, as well as of adherens junctions and focal adhesions, but it does not have those for desmosomes. The latter omission is curious, and the ascidian type-I cadherins may represent an ancestral form of the vertebrate type-I cadherins and desmosomal cadherins, while Ci-Plakin may represent an ancestral protein of the vertebrate desmoplakins and plectins. If this is the case, then ascidians may have retained ancestral desmosome-like structures, as suggested by previous electron-microscopic observations. In addition, ECM genes that have been regarded as vertebrate-specific were also found in the Ciona genome. These results suggest that the last common ancestor shared by ascidians and vertebrates, the ancestor of the entire chordate clade, had essentially the same systems of cell junctions as those in extant vertebrates. However, the number of such genes for each family in the Ciona genome is far smaller than that in vertebrate genomes. In vertebrates these ancestral cell junctions appear to have evolved into more diverse, and possibly more complex, forms, compared with those in their urochordate siblings.  相似文献   
93.
PVA-gel beads were used as a biocarrier in a lab-scale UASB reactor treating synthetic wastewater composed of corn steep liquor (CSL) with the aim of evaluating its use as a growth nucleus to enhance granule formation. Over 117 days of operation, the organic loading rate was increased to 22.5kgCOD/m(3)/day with an influent COD of about 10.8g/L at an HRT of 12h with COD removal efficiencies greater than 87%. By the end of the study period, the PVA-gel turned black and granule formation was achieved as compared with the formation of much fewer natural granules without the PVA-gel nucleus. No filamentous bacteria were found on the surface or interior of the PVA-gel beads. The PVA-gel granules had an average settling velocity 200m/h (5cm/s), and a biomass attachment of 0.93g VSS/g PVA-gel. The required time for formation of PVA-gel granules was thus demonstrated to be shorter than that of ordinary sludge granules under the experimental conditions used in this study.  相似文献   
94.
Human β-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of α- and β-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using α-1,6-mannosyltransferase-deficient (och1Δ) yeast as the host. Genes encoding the α- and β-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (αα) and HexB (ββ). A total of 57 mg of β-hexosaminidase isozymes, of which 13 mg was HexA (αβ), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the β-subunit. The purified HexA was treated with α-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 ± 0.1 and 1.7 ± 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the β-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.  相似文献   
95.
The process of cancer development consists of three sequential stages termed initiation, promotion, and progression. Oxidative stress damages DNA and introduces mutations into oncogenes or tumor suppressor genes, thus contributing to cancer development. Cancer chemoprevention is defined to prevent or delay the development of cancer by the use of natural or synthetic substances. In the present study, we synthesized a series of organoselenium compounds and evaluated their possible chemopreventive properties in human prostate cancer LNCaP cells. Among 42 organoselenium compounds tested, two compounds, 3-selena-1-dethiacephem 13 and 3-selena-1-dethiacephem 14 strongly activated the Nrf2/ARE (antioxidant response element) signaling and thus markedly increased expression of heme oxygenase-1 (HO-1), a phase II antioxidant enzyme. Translocation of Nrf2 to the nucleus preceded HO-1 protein induction by two compounds. The intracellular ROS level was strongly reduced immediately after treatment with these compounds, showing that they are potent antioxidants. Finally, both compounds inhibited cell growth via cell cycle arrest. Our findings suggest that compounds 13 and 14 could not only attenuate oxidative stress through Nrf2/ARE activation and direct ROS scavenging but also inhibit cell growth. Thus, these compounds possess the potential as pharmacological agents for chemoprevention of human prostate cancer.  相似文献   
96.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   
97.
The reaction of the octahedral mononuclear complex, trans(N)-[Co(l-pen-N,O,S)2] (pen = penicillaminate), with [PtCl2(bpy)] (bpy = 2,2′-bipyridine) stereoselectively gave an optically active S-bridged dinuclear complex, [Pt(bpy){Co(l-pen)2}]Cl · 3H2O (2Cl · 3H2O), whose structure is enantiomeric to the previously reported [Pt(bpy){Co(d-pen)2}]Cl · 3H2O (1Cl · 3H2O). The mixture of equimolar amounts of 1Cl · 3H2O and 2Cl · 3H2O in H2O crystallizes as [Pt(bpy){Co(d-pen)2}]0.5[Pt(bpy){Co(l-pen)2}]0.5Cl · 7H2O (3Cl · 7H2O), in which the enantiomeric complex cations 1 and 2 are included in the ratio of 1:1. The crystal structures of 2Cl · 3H2O and 3Cl · 7H2O were determined by X-ray crystallography, and compared with that of 1Cl · 3H2O. The structural feature for 2 is essentially consistent with that for 1, except for the absolute configurations around the octahedral Co(III) center. The optically active complex cation 2 exists as a monomer, accompanied by no intermolecular interactions in the π-electronic systems of bpy moieties. In the crystals of 3Cl · 7H2O, on the other hand, the enantiomeric complex cations, [Pt(bpy){Co(d-pen)2}]+ and [Pt(bpy){Co(l-pen)2}]+, are arranged alternately while overlapping the bpy planes along a axis, and the π electronic system of the bpy framework in [Pt(bpy){Co(d-pen)2}]+ interacts with those in [Pt(bpy){Co(l-pen)2}]+. Differences between the crystal structures of 2Cl · 3H2O and3Cl · 7H2O significantly reflect their diffuse reflectance spectra. In aqueous solution, each cation in both 2Cl · 3H2O and 3Cl · 7H2O is comparatively put on a free environment without such intermolecular interactions.  相似文献   
98.
To clarify the alternative mechanisms to vitamin E (VE) regulating lipid peroxide accumulation in the liver after docosahexaenoic acid (DHA) ingestion, we examined the relationship between the DHA-induced lipid peroxide formation and induction of the xenobiotic transporters, Ral-binding GTPase-activating protein (RalBP1) and multidrug resistance-associated proteins 1, 2 and 3 (MRP1-3), in the liver of rats fed with DHA. The test diets contained DHA and linoleic acid (LA) (8.7% and 2.1% of total energy, respectively) with different levels of dietary VE (normal and low: 68 and 7.7 mg of alpha-tocopherol equivalent per kg diet, respectively), and the control diet contained LA alone (11.5% of total energy). The rats were fed with these experimental diets for 14 d. The proportions of DHA in the liver, kidney and heart were higher in the DHA-fed groups than in the LA-fed group. The tissue thiobarbituric acid values as an index of lipid peroxidation were also significantly higher in the DHA-fed groups, but the value did not differ between the DHA-fed groups with different VE levels. In the liver, there were no significant differences in the glutathione S-transferase (GST) and aldehyde dehydrogenase (ALDH) activities or in the expression of GST M2, RalBP1, MRP1 and MRP2 mRNA. However, the obvious induction of expression of liver MRP3 mRNA and tendency to produce the protein were recognized after DHA ingestion. This study is the first to report the gene expression of MRP3 by DHA ingestion. There might exist, therefore, some relationship between the DHA intake and MRP3 induction in regulating lipid peroxide accumulation in the liver.  相似文献   
99.
The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.  相似文献   
100.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25?000?×?g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号