首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1300篇
  免费   71篇
  2022年   6篇
  2021年   15篇
  2020年   6篇
  2019年   16篇
  2018年   16篇
  2017年   19篇
  2016年   22篇
  2015年   50篇
  2014年   49篇
  2013年   62篇
  2012年   83篇
  2011年   72篇
  2010年   61篇
  2009年   57篇
  2008年   98篇
  2007年   89篇
  2006年   72篇
  2005年   70篇
  2004年   84篇
  2003年   82篇
  2002年   78篇
  2001年   11篇
  2000年   16篇
  1999年   11篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1995年   14篇
  1994年   15篇
  1993年   10篇
  1992年   13篇
  1991年   11篇
  1990年   13篇
  1989年   12篇
  1988年   11篇
  1987年   5篇
  1986年   13篇
  1985年   6篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1975年   8篇
  1974年   6篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
排序方式: 共有1371条查询结果,搜索用时 15 毫秒
41.
Y Okada  M Kawagishi  M Kusaka 《Life sciences》1990,47(15):PL65-PL70
Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of 3H-diisopropylfluorophosphate (3H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil margination accounts for the neutropenia and the marginated neutrophils return to the circulation.  相似文献   
42.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.  相似文献   
43.
Li Z  Okamoto K  Hayashi Y  Sheng M 《Cell》2004,119(6):873-887
The proper intracellular distribution of mitochondria is assumed to be critical for normal physiology of neuronal cells, but direct evidence for this idea is lacking. Extension or movement of mitochondria into dendritic protrusions correlates with the development and morphological plasticity of spines. Molecular manipulations of dynamin-like GTPases Drp1 and OPA1 that reduce dendritic mitochondria content lead to loss of synapses and dendritic spines, whereas increasing dendritic mitochondrial content or mitochondrial activity enhances the number and plasticity of spines and synapses. Thus, the dendritic distribution of mitochondria is essential and limiting for the support of synapses. Reciprocally, synaptic activity modulates the motility and fusion/fission balance of mitochondria and controls mitochondrial distribution in dendrites.  相似文献   
44.
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.  相似文献   
45.
Mitochondria and autoimmunity in primary biliary cirrhosis   总被引:5,自引:0,他引:5  
Primary biliary cirrhosis is an enigmatic autoimmune liver disease that predominantly affects women and is characterized by antimitochondrial antibodies and specific destruction of small bile ducts. Interestingly, patients with this disease not only have high titer antibodies to mitochondria, but also highly directed, liver-specific CD4 and CD8 cells directed at the same mitochondrial autoantigens. These mitochondrial autoantigens are all members of the 2-oxo dehydrogenase complex family and include the E2 component of pyruvate dehydrogenase as the major autoantigen. Moreover, the epitopes recognized by CD4, CD8 T cells and autoantibody, are all directed within the same region, namely the lipoyl domain of pyruvate dehydrogenase complex-E2. All cells in the body have mitochondria but there appear to be specific destruction of biliary cells. We believe that this specific destruction is secondary to a highly directed mucosal response that focuses on biliary cells because of the involvement of a polymeric immunoglobulin receptor, the presence of immunoglobulin A in mucosal secretions, and the unique apoptotic properties of biliary epithelium.  相似文献   
46.
Novel nonsteroidal C(17,20)-lyase inhibitors were synthesized using de novo design based on its substrate, 17 alpha-hydroxypregnenolone, and several compounds exhibited potent C(17,20)-lyase inhibition. However, in vivo activities were found to be short-lasting, and in order to improve the duration of action, a series of benzothiophene derivatives were evaluated. As a result, compounds 9h, (S)-9i, and 9k with nanomolar enzyme inhibition (IC(50)=4-9 nM) and 9e (IC(50)=27 nM) were identified to have powerful in vivo efficacy with extended duration of action. The key structural determinants for the in vivo efficacy were demonstrated to be the 5-fluoro group on the benzothiophene ring and the 4-imidazolyl moiety. Superimposition of 9k and 17 alpha-hydroxypregnenolone demonstrated their structural similarity and enabled rationalization of the pharmacological results. In addition, selected compounds were also identified to be potent inhibitors of human enzyme with IC(50) values of 20-30 nM.  相似文献   
47.
The use of granulocyte colony stimulating factor (G-CSF) for recovery from neutropenia has been established; however, acute lung injury due to G-CSF-induced polymorphonuclear leukocyte (PMN) activation is a serious complication. This study was designed to compare the activation of PMN with single bolus administration and continuous administration of G-CSF. Healthy volunteers (age 33.8 +/- 1.4 yr; n = 6) received a single bolus injection of 50 microm/m2 of G-CSF (SI; n = 6) or continuous subcutaneous injection of 50 microm/m2 of G-CSF for 24 h (CI; n = 6) and were followed for 48 h. Circulating leukocyte counts, markers of activation on PMN, and circulating levels of G-CSF, IL-6, and PMN elastase were measured. SI rapidly increased serum G-CSF levels, which peaked at 4 h, whereas CI gradually increased G-CSF levels, which remained at a steady level from 8 to 24 h. SI caused a rapid decrease in PMN counts at 0.5 h followed by sustained increase to peak at 12 h. CI gradually increased PMN counts, which peaked at 24 h, but the peak values were not significantly different between the groups. SI-induced activation of PMN, which was characterized by increased expression of CD11b, decreased expression of L-selectin, and increased F-actin content, led to increases in serum IL-6 and PMN elastase level. Such changes were all attenuated with CI (P < 0.05). We conclude that continuous subcutaneous injection of G-CSF resulted in a marrow response similar to that to a single injection but yielded reduced PMN activation.  相似文献   
48.
The metabolic rate and its scaling relationship to colony size were studied in the colonial ascidian Botrylloides simodensis. The colonial metabolic rate, measured by the oxygen consumption rate (V(O2) in millilitres of O(2) per hour) and the colony mass (wet weight M(w) in grams) showed the allometric relationship (V(O2) = 0.0412 M(w)(0.799). The power coefficient was statistically not different from 0.75, the value for unitary organisms. The size of the zooids and the tunic volume fraction in a colony were kept constant irrespective of the colonial size. These results, together with the two-dimensional colonial shape, excluded shape factors and colonial composition as possible causes of allometry. Botryllid ascidians show a takeover state in which all the zooids of the parent generation in a colony degenerate and zooids of a new generation develop in unison. The media for connection between zooids such as a common drainage system and connecting vessels to the common vascular system experienced reconstruction. The metabolic rate during the takeover state was halved and was directly proportional to the colonial mass. The scaling thus changed from being allometric to isometric. The alteration in the scaling that was associated with the loss of the connection between the zooids strongly support the hypothesis that the allometry was derived from mutual interaction among the zooids. The applicability of this hypothesis to unitary organisms is discussed.  相似文献   
49.
Peripheral T lymphocytes undergo activation by antigenic stimulation and function in hypoxic areas of inflammation. We demonstrated in CD3-positive human T cells accumulating in inflammatory tissue expression of the hypoxia-inducible factor-1alpha (HIF-1alpha), indicating a role of hypoxia-mediated signals in regulation of T cell function. Surprisingly, accumulation of HIF-1alpha in human T cells required not only hypoxia but also TCR/CD3-mediated activation. Moreover, hypoxia repressed activation-induced cell death (AICD) by TCR/CD3 stimulation, resulting in an increased survival of the cells. Microarray analysis suggested the involvement of HIF-1 target gene product adrenomedullin (AM) in this process. Indeed, AM receptor antagonist abrogated hypoxia-mediated repression of AICD. Moreover, synthetic AM peptides repressed AICD even in normoxia. Taken together, we propose that hypoxia is a critical determinant of survival of the activated T cells via the HIF-1alpha-AM cascade, defining a previously unknown mode of regulation of peripheral immunity.  相似文献   
50.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine found in lepidopteran insects that possesses diverse biological activities such as stimulation of immune cells (plasmatocytes), cell proliferation, and larval growth regulation. We found another novel function of GBP that induces a hemolysis of another class of blood cells (oenocytoids). In the lysate of oenocytoids we identified a GBP-binding protein that shows a specific affinity for GBP. The characterization of purified GBP-binding protein and its cDNA demonstrated it as a 49.5-kDa novel protein with a C-terminal region displaying limited homology to several insect lipoproteins. Results of Northern and Western blotting indicated that the GBP-binding protein should be synthesized only in blood cells. Immunoelectron microscopic analyses confirmed that indirect immunoreactive signals were mostly localized in oenocytoids. Kinetic and biological analyses of interaction between GBP and the binding protein showed their strong binding was followed by clearance of GBP from hemolymph, thus indicating that this protein might function as an inhibitory factor against GBP. Based on these results, we propose that insect cytokine GBP shows multifunctions even in cellular immunity: it serves to stimulate immune cells and afterward silences its own action by inducing the binding protein through specific hemolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号