首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   15篇
  2019年   5篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   14篇
  2011年   19篇
  2010年   17篇
  2009年   11篇
  2008年   38篇
  2007年   39篇
  2006年   24篇
  2005年   23篇
  2004年   16篇
  2003年   22篇
  2002年   27篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   12篇
  1997年   13篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1979年   8篇
  1978年   4篇
  1977年   7篇
  1976年   7篇
  1975年   9篇
  1974年   5篇
  1973年   6篇
  1971年   6篇
  1970年   3篇
  1969年   4篇
  1968年   8篇
  1967年   5篇
  1966年   5篇
排序方式: 共有508条查询结果,搜索用时 46 毫秒
61.
BACKGROUND: A critical component of the host defense against enteric infections is the immunological response of the mucosal membrane, a major starting point of infectious disease, such as typhoid fever. The mucosal immune system consists of an integrated network of lymphoid tissues, mucous membrane-associated cells, and effector molecules. In the present study, we developed a recombinant Bifidobacterium animalis (B. animalis) genetically modified with the Salmonella flagellin gene for mucosal immunization as an oral typhoid vaccine. METHODS: We constructed an oral vaccine against Salmonella typhimurium, consisting of recombinant B. animalis containing the flagellin gene of Salmonella. The recombinant B. animalis was administered orally to mice every other day for 6 weeks. Anti-flagellin antibodies in the serum and stools were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: We detected significantly higher levels of flagellin-specific IgA in the serum and stools of the mice treated with the recombinant B. animalis containing the flagellin gene than was seen in those treated with parental B. animalis. CONCLUSIONS: Our findings suggest that an oral vaccination using recombinant B. animalis genetically modified with the flagellin gene of Salmonella may be effective against Salmonella infections.  相似文献   
62.
63.
Functional analysis of Bifidobacterium genes is essential for understanding host-Bifidobacterium interactions with beneficial effects on human health; however, the lack of an effective targeted gene inactivation system in bifidobacteria has prevented the development of functional genomics in this bacterium. Here, we report the development of a markerless gene deletion system involving a double crossover in Bifidobacterium longum. Incompatible plasmid vectors were used to facilitate a second crossover step. The conditional replication vector pBS423-ΔrepA, which lacks the plasmid replication gene repA, was integrated into the target gene by a first crossover event. Subsequently, the replicative plasmid pTBR101-CM, which harbors repA, was introduced into this integrant to facilitate the second crossover step and subsequent elimination of the excised conditional replication vector from the cells by plasmid incompatibility. The proposed system was confirmed to work as expected in B. longum 105-A using the chromosomal full-length β-galactosidase gene as a target. Markerless gene deletion was tested using the aga gene, which encodes α-galactosidase, whose substrates include raffinose. Almost all the pTBR101-CM-transformed strains became double-crossover recombinants after subculture, and 4 out of the 270 double-crossover recombinants had lost the ability to assimilate raffinose. Genotype analysis of these strains revealed markerless gene deletion of aga. Carbohydrate assimilation analysis and α-galactosidase activity measurement were conducted using both the representative mutant and a plasmid-based aga-complemented strain. These functional analyses revealed that aga is the only gene encoding a functional α-galactosidase enzyme in B. longum 105-A.  相似文献   
64.
65.
Secretory leukocyte protease inhibitor (SLPI) has multiple functions, including inhibition of protease activity, microbial growth, and inflammatory responses. In this study, we demonstrate that mouse SLPI is critically involved in innate host defense against pulmonary mycobacterial infection. During the early phase of respiratory infection with Mycobacterium bovis bacillus Calmette-Guérin, SLPI was produced by bronchial and alveolar epithelial cells, as well as alveolar macrophages, and secreted into the alveolar space. Recombinant mouse SLPI effectively inhibited in vitro growth of bacillus Calmette-Guérin and Mycobacterium tuberculosis through disruption of the mycobacterial cell wall structure. Each of the two whey acidic protein domains in SLPI was sufficient for inhibiting mycobacterial growth. Cationic residues within the whey acidic protein domains of SLPI were essential for disruption of mycobacterial cell walls. Mice lacking SLPI were highly susceptible to pulmonary infection with M. tuberculosis. Thus, mouse SLPI is an essential component of innate host defense against mycobacteria at the respiratory mucosal surface.  相似文献   
66.
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.  相似文献   
67.
68.
Several serine/threonine kinases reportedly phosphorylate serine residues of IRS-1 and thereby induce insulin resistance. In this study, to investigate the effect of mTOR/raptor on insulin signaling and metabolism in K/KAy mice with genetic obesity-associated insulin resistance, a dominant negative raptor, COOH-terminally deleted raptor (raptor-DeltaC(T)), was overexpressed in the liver via injection of its adenovirus into the circulation. Hepatic raptor-DeltaC(T) expression levels were 1.5- to 4-fold that of endogenously expressed raptor. Glucose tolerance in raptor-DeltaC(T)-overexpressing mice improved significantly compared with that of LacZ-overexpressing mice. Insulin-induced activation of p70S6 kinase (p70(S6k)) was significantly suppressed in the livers of raptor-DeltaC(T) overexpressing mice. In addition, insulin-induced IRS-1, Ser(307), and Ser(636/639) phosphorylations were significantly suppressed in the raptor-DeltaC(T)-overexpressing liver, whereas tyrosine phosphorylation of IRS-1 was increased. PI 3-kinase activation in response to insulin stimulation was increased approximately twofold, and Akt phosphorylation was clearly enhanced under both basal and insulin-stimulated conditions in the livers of raptor-DeltaC(T) mice. Thus, our data indicate that suppression of the mTOR/p70(S6k) pathway leads to improved glucose tolerance in K/KAy mice. These observations may contribute to the development of novel antidiabetic agents.  相似文献   
69.
We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.  相似文献   
70.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels are activated during osmotic swelling and involved in the subsequent volume regulation in most animal cells. To test the hypothesis that the ClC-3 protein is the molecular entity corresponding to the VSOR Cl- channel in cardiomyocytes, the properties of VSOR Cl- currents in single ventricular myocytes isolated from ClC-3-deficient (Clcn3(-/-)) mice were compared with those of the same currents in ClC-3-expressing wild-type (Clcn3(+/+)) and heterozygous (Clcn3(+/-)) mice. Basal whole-cell currents recorded under isotonic conditions in ClC-3-deficient and -expressing cells were indistinguishable. The biophysical and pharmacological properties of whole-cell VSOR Cl- currents in ClC-3-deficient cells were identical in ClC-3-expressing cells. The VSOR Cl- current density, which is an indicator of the plasmalemmal expression of functional channels, was essentially the same in cells isolated from these 3 types of mice and C57BL/6 mice. Activation of protein kinase C (PKC) by a phorbol ester was found to upregulate VSOR Cl- currents in ClC-3-deficient and -expressing cardiomyocytes. This effect is opposite to the reported downregulatory effect of PKC activators on ClC-3-associated Cl- currents. We thus conclude that functional expression of VSOR Cl- channels in the plasma membrane of mouse cardiomyocytes is independent of the molecular expression of ClC-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号