首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   21篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   10篇
  2013年   38篇
  2012年   34篇
  2011年   17篇
  2010年   9篇
  2009年   11篇
  2008年   19篇
  2007年   27篇
  2006年   20篇
  2005年   26篇
  2004年   26篇
  2003年   25篇
  2002年   21篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   9篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有401条查询结果,搜索用时 93 毫秒
21.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   
22.

Background

The ability to select an action by considering both delays and amount of reward outcome is critical for maximizing long-term benefits. Although previous animal experiments on impulsivity have suggested a role of serotonin in behaviors requiring prediction of delayed rewards, the underlying neural mechanism is unclear.

Methodology/Principal Findings

To elucidate the role of serotonin in the evaluation of delayed rewards, we performed a functional brain imaging experiment in which subjects chose small-immediate or large-delayed liquid rewards under dietary regulation of tryptophan, a precursor of serotonin. A model-based analysis revealed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this correlated activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this correlated activity was stronger at high serotonin levels.

Conclusions/Significance

Our results suggest that serotonin controls the time scale of reward prediction by differentially regulating activities within the striatum.  相似文献   
23.
We developed a rapid single nucleotide polymorphism (SNP) detection system named smart amplification process version 2 (SMAP 2). Because DNA amplification only occurred with a perfect primer match, amplification alone was sufficient to identify the target allele. To achieve the requisite fidelity to support this claim, we used two new and complementary approaches to suppress exponential background DNA amplification that resulted from mispriming events. SMAP 2 is isothermal and achieved SNP detection from whole human blood in 30 min when performed with a new DNA polymerase that was cloned and isolated from Alicyclobacillus acidocaldarius (Aac pol). Furthermore, to assist the scientific community in configuring SMAP 2 assays, we developed software specific for SMAP 2 primer design. With these new tools, a high-precision and rapid DNA amplification technology becomes available to aid in pharmacogenomic research and molecular-diagnostics applications.  相似文献   
24.
ObjectivesMammalian DNA methyltransferases are essential to re‐establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl‐CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)—a zinc finger type of MBP—is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear.Materials and MethodsThis study used the Cre‐loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real‐time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms.ResultsGermline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity.ConclusionsThese findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.

Heterozygous loss of Zbtb38 leads to aberrant epiblast cell proliferation and apoptosis shortly after implantation. Heterozygous loss of Zbtb38 reduced the expression of Nanog and Sox2 in ICM and epiblast.  相似文献   
25.
In the courtship behavior of the German cockroach, the male presents tergal glands to the female and feeds her with glandular secretions to place her in the appropriate precopulatory position. The phagostimulant activity of the secretions was quantitatively examined using the polyethylene glycol film method. The methanol extract of the glands on the eighth tergite induced a potent feeding response in 6-day-old virgin females (EC 50 = 0.0037 male equivalent/40 g PEG spot). However, there was no temporal relation between the feeding response and the sexual receptivity of the females. Moreover, besides virgin females, the extract induced a feeding response in gravid or mated females, males, and the last-instar nymphs. These results strongly suggest that the secretions function as a dietary feeding stimulant in principle but as a courtship pheromone in the context of courtship behavior where the stimulants are offered as a nuptial gift.  相似文献   
26.
Aptamer-dependent full-length cDNA synthesis by overlap extension PCR   总被引:5,自引:0,他引:5  
Mitani Y  Nakayama T  Harbers M  Hayashizaki Y 《BioTechniques》2004,37(1):124, 126, 128-124, 126, 129
  相似文献   
27.
A simple new assay was designed for lipoxygenase inhibitors. This assay was used to find the novel lipoxygenase inhibitor, tetrapetalone A (1). Tetrapetalone A (1), C26H33NO7, was isolated from Streptomyces sp. USF-4727 strain. Its planar structure was determined by spectroscopic evidence and by methylating with diazomethane to show the presence of a novel tetracyclic skeleton and a beta-D-rhodinosyl moiety. The stereochemistry of 1 was investigated by the coupling constant in the 1H-NMR spectrum, NOE correlations, modified Mosher's method and derivation. We have reported the structural elucidation of 1 in our previous paper. However, further investigation gave another structure for 1, which is described in this paper. Tetrapetalone A showed similar inhibitory activity against soybean lipoxygenase to the two well-known lipoxygenase inhibitors, kojic acid and NDGA, while methylated tetrapetalone A (2) showed little inhibitory activity, even at a concentration of 1 mM.  相似文献   
28.
Three novel lipoxygenase inhibitors, tetrapetalone B (2, C(28)H(35)NO(9)), C (3, C(26)H(34)NO(8)), and D (4, C(28)H(36)NO(10)), were isolated from a culture broth of Streptomyces sp. USF-4727 that produced a lipoxygenase inhibitor tetrapetalone A (1) simultaneously. Each chemical structure was revealed by spectroscopic evidence, this suggests that these three compounds are structurally related to 1. They had a tetracyclic skeleton and a beta-D-rhodinosyl moiety. Tetrapetalone B, C, and D inhibited soybean lipoxygenase with IC(50): 320, 360, and 340 microM respectively.  相似文献   
29.
Radial glial cells derive from neuroepithelial cells, and both cell types are identified as neural stem cells. Neural stem cells are known to change their competency over time during development: they initially undergo self-renewal only and then give rise to neurons first and glial cells later. Maintenance of neural stem cells until late stages is thus believed to be essential for generation of cells in correct numbers and diverse types, but little is known about how the timing of cell differentiation is regulated and how its deregulation influences brain organogenesis. Here, we report that inactivation of Hes1 and Hes5, known Notch effectors, and additional inactivation of Hes3 extensively accelerate cell differentiation and cause a wide range of defects in brain formation. In Hes-deficient embryos, initially formed neuroepithelial cells are not properly maintained, and radial glial cells are prematurely differentiated into neurons and depleted without generation of late-born cells. Furthermore, loss of radial glia disrupts the inner and outer barriers of the neural tube, disorganizing the histogenesis. In addition, the forebrain lacks the optic vesicles and the ganglionic eminences. Thus, Hes genes are essential for generation of brain structures of appropriate size, shape and cell arrangement by controlling the timing of cell differentiation. Our data also indicate that embryonic neural stem cells change their characters over time in the following order: Hes-independent neuroepithelial cells, transitory Hes-dependent neuroepithelial cells and Hes-dependent radial glial cells.  相似文献   
30.
Nitric oxide (NO) is a short lived, readily diffusible intracellular messenger molecule associated with multiple organ-specific regulatory functions. In this communication, we elucidate the effect of exogenous NO administration, using nitroglycerin (GTN), on ferric nitrilotriacetate (Fe-NTA)-induced renal oxidative stress, hyperproliferative response and necrosis in ddY mice. Fe-NTA is a known complete renal carcinogen as well as renal and hepatic tumor promoter, which act by generating oxidative stress in the tissues. GTN treatment to ddY mice prior to Fe-NTA administration resulted in a highly significant protection against Fe-NTA-induced renal oxidative stress, hyperproliferative response and necrosis. In oxidative stress protection studies, the decrease in the level of renal glutathione and antioxidant enzyme activities induced by Fe-NTA were significantly reversed by GTN pretreatment in a dose-dependent manner (12-46% recovery, P<0.05-0.001). GTN pretreatment also resulted in a dose-dependent inhibition (24-39% inhibition, P<0.05-0.001) of Fe-NTA-induced lipid peroxidation as measured by TBARS formation in renal tissues. Similarly, in hyperproliferation protection studies, GTN pretreatment showed a strong inhibition of Fe-NTA-induced renal ornithine decarboxylase (ODC) activity (51-57% inhibition, P<0.001) and [3H]thymidine incorporation (43-58% inhibition, P<0.001) into renal DNA. GTN pretreatment almost completely prevented kidney biomolecules from oxidative damage and protected the tissue against the observed histopathological alterations. From this data, it can be concluded that exogenously produced NO from GTN might scavenge reactive oxygen species (ROS) and decreases toxic metabolites of Fe-NTA and thereby inhibiting renal oxidative stress. In addition, exogenously produced NO can also inhibit Fe-NTA-induced hyperproliferative response by down-regulating the activity of ODC and the rate of [3H]thymidine incorporation into renal DNA and could be suggested as another possible clinical application for this NO-donor (GTN, traditionally used as a vasodilator) in oncological medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号