首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1603篇
  免费   106篇
  2023年   7篇
  2022年   14篇
  2021年   26篇
  2020年   7篇
  2019年   15篇
  2018年   34篇
  2017年   23篇
  2016年   33篇
  2015年   40篇
  2014年   44篇
  2013年   101篇
  2012年   83篇
  2011年   72篇
  2010年   40篇
  2009年   51篇
  2008年   77篇
  2007年   96篇
  2006年   64篇
  2005年   76篇
  2004年   72篇
  2003年   86篇
  2002年   78篇
  2001年   50篇
  2000年   51篇
  1999年   51篇
  1998年   22篇
  1997年   13篇
  1996年   8篇
  1995年   17篇
  1994年   11篇
  1993年   10篇
  1992年   30篇
  1991年   37篇
  1990年   33篇
  1989年   30篇
  1988年   20篇
  1987年   20篇
  1986年   18篇
  1985年   17篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1977年   8篇
  1976年   9篇
  1975年   8篇
  1974年   11篇
  1973年   11篇
  1972年   7篇
  1971年   8篇
  1967年   8篇
排序方式: 共有1709条查询结果,搜索用时 513 毫秒
101.
DNA computing is a novel method of computing proposed by Adleman (1994), in which the data is encoded in the sequences of oligonucleotides. Massively parallel reactions between oligonucleotides are expected to make it possible to solve huge problems. In this study, reliability of the ligation process employed in the DNA computing is tested by estimating the error rate at which wrong oligonucleotides are ligated. Ligation of wrong oligonucleotides would result in a wrong answer in the DNA computing. The dependence of the error rate on the number of mismatches between oligonucleotides and on the combination of bases is investigated.  相似文献   
102.
Aptamer-dependent full-length cDNA synthesis by overlap extension PCR   总被引:5,自引:0,他引:5  
Mitani Y  Nakayama T  Harbers M  Hayashizaki Y 《BioTechniques》2004,37(1):124, 126, 128-124, 126, 129
  相似文献   
103.
A simple new assay was designed for lipoxygenase inhibitors. This assay was used to find the novel lipoxygenase inhibitor, tetrapetalone A (1). Tetrapetalone A (1), C26H33NO7, was isolated from Streptomyces sp. USF-4727 strain. Its planar structure was determined by spectroscopic evidence and by methylating with diazomethane to show the presence of a novel tetracyclic skeleton and a beta-D-rhodinosyl moiety. The stereochemistry of 1 was investigated by the coupling constant in the 1H-NMR spectrum, NOE correlations, modified Mosher's method and derivation. We have reported the structural elucidation of 1 in our previous paper. However, further investigation gave another structure for 1, which is described in this paper. Tetrapetalone A showed similar inhibitory activity against soybean lipoxygenase to the two well-known lipoxygenase inhibitors, kojic acid and NDGA, while methylated tetrapetalone A (2) showed little inhibitory activity, even at a concentration of 1 mM.  相似文献   
104.
Three novel lipoxygenase inhibitors, tetrapetalone B (2, C(28)H(35)NO(9)), C (3, C(26)H(34)NO(8)), and D (4, C(28)H(36)NO(10)), were isolated from a culture broth of Streptomyces sp. USF-4727 that produced a lipoxygenase inhibitor tetrapetalone A (1) simultaneously. Each chemical structure was revealed by spectroscopic evidence, this suggests that these three compounds are structurally related to 1. They had a tetracyclic skeleton and a beta-D-rhodinosyl moiety. Tetrapetalone B, C, and D inhibited soybean lipoxygenase with IC(50): 320, 360, and 340 microM respectively.  相似文献   
105.
Radial glial cells derive from neuroepithelial cells, and both cell types are identified as neural stem cells. Neural stem cells are known to change their competency over time during development: they initially undergo self-renewal only and then give rise to neurons first and glial cells later. Maintenance of neural stem cells until late stages is thus believed to be essential for generation of cells in correct numbers and diverse types, but little is known about how the timing of cell differentiation is regulated and how its deregulation influences brain organogenesis. Here, we report that inactivation of Hes1 and Hes5, known Notch effectors, and additional inactivation of Hes3 extensively accelerate cell differentiation and cause a wide range of defects in brain formation. In Hes-deficient embryos, initially formed neuroepithelial cells are not properly maintained, and radial glial cells are prematurely differentiated into neurons and depleted without generation of late-born cells. Furthermore, loss of radial glia disrupts the inner and outer barriers of the neural tube, disorganizing the histogenesis. In addition, the forebrain lacks the optic vesicles and the ganglionic eminences. Thus, Hes genes are essential for generation of brain structures of appropriate size, shape and cell arrangement by controlling the timing of cell differentiation. Our data also indicate that embryonic neural stem cells change their characters over time in the following order: Hes-independent neuroepithelial cells, transitory Hes-dependent neuroepithelial cells and Hes-dependent radial glial cells.  相似文献   
106.
107.
Magnesium-dependent neutral sphingomyelinase (N-SMase) present in plasma membranes is an enzyme that can be activated by stress in the form of inflammatory cytokines, serum deprivation, and hypoxia. The design of small molecule N-SMase inhibitors may offer new therapies for the treatment of inflammation, ischemic injury, and cerebral infarction. Recently, we synthesized a series of difluoromethylene analogues (SMAs) of sphingomyelin. We report here the effects of SMAs on the serum/glucose deprivation-induced death of neuronally differentiated pheochromocytoma (PC-12) cells and on cerebral infarction in mice. SMAs inhibited the enhanced N-SMase activity in the serum/glucose-deprived PC-12 cells, and thereby suppressed the apoptotic sequence: ceramide formation, c-Jun N-terminal kinase phosphorylation, caspase-3 activation, and DNA fragmentation in the nuclei. Administration of SMA-7 (10 mg/kg i.v.) with IC50= 3.3 microM to mice whose middle cerebral arteries were occluded reduced significantly the size of the cerebral infarcts, compared to the control mice. These results suggest that N-SMase is a key component of the signaling pathways in cytokine- and other stress-induced cellular responses, and that inhibiting or stopping N-SMase activity is an important strategy to prevent neuron death from ischemia.  相似文献   
108.
109.
Functional analysis using RNAi was performed on eleven genes for metalloproteases of the M12A family in Caenorhabditis elegans and the interference of the C17G1.6 gene (nas-37) was found to cause incomplete molting. The RNAi of the C26C6.3 gene (nas-36) also caused a similar molting defect but not so severely as that of the nas-37 gene. Both the genes encode an astacin-like metalloprotease with an epidermal growth factor (EGF)-like domain, a CUB domain, and a thrombospondin-1 domain, in this order. The promoter-driven green fluorescent protein (GFP) expression analysis suggested that they are expressed in hypodermal cells throughout the larval stages and in the vulva of adult animals. In the genetic background of rde-1(ne219), where RNAi does not work, the molting defect caused by the nas-37 interference was observed when the transgenic wild-type rde-1 gene was expressed under the control of the dpy-7 promoter, known to be active in the hypodermal cells, but not under the control of the myo-3 promoter, active in the muscular cells. Therefore these proteases are thought to be secreted by the hypodermal cells and to participate in shedding of old cuticles.  相似文献   
110.
To obtain a novel biodegradable cross-linker, polymerizable polyphosphate (PIOP) was synthesized by ring-opening polymerization of 2-i-propyl-2-oxo-1,3,2-dioxaphospholane with 2-(2-oxo-1,3,2-dioxaphosphoroyloxyethyl methacrylate) (OPEMA). The number averaged molecular weight of the PIOP was 1.2 x 10(4), and the number of OPEMA units in one PIOP molecule was 2.2. Nonenzymatic degradation of the PIOP was evaluated in various pH aqueous media. The degree of hydrolysis was dependent on the pH; that is, it increased with an increase in the pH of the medium. At pH 11.0, the PIOP completely degraded in only 6 days. The poly[2-methacryloyloxyethyl phosphorylcholine (MPC)] cross-linked with the PIOP was prepared by radical polymerization. This polymer could form hydrogel, and the free water fraction in the hydrogel was high. The enzymatic activity of trypsin in contact with the hydrogel was similar to that in buffer solution. There is no adverse effect caused by the hydrogel to reduce the function of the trypsin. The cytotoxicity of poly(MPC) and degraded PIOP was evaluated using v79 cells, and it was not observed in either case. In conclusion, PIOP is a hydrolyzable polymer, which can be used as a cross-linker, and novel hydrogels having biodegradability and biocompatibility were prepared from poly(MPC) cross-linked with the PIOP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号